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ABSTRACT
This paper discusses how intelligent machines have replaced humans in tasks requiring, heavy, and repetitive labor, whilst being
better  suited  to  the  requirements  of  these  jobs.  The  increased  capacity  for  brute  force  computation  has  facilitated  increased
collaborative innovation between man and machines. For example, the intelligent farming machines have overcome the confines of
computational power, algorithms, and data, and the next generation of intelligent farming machines is expected to interact, learn,
and grow autonomously. In the future, in addition to self enhancement, humans are expected to teach machines to learn and work.
Scientists  and  engineers  will  collaborate  with  machines  to  accomplish  invention,  discovery,  and  creation.  For  “embodied
intelligence” in the farming machine context, we propose (1) deep learning should be performed iteratively via real-time interactions
with the external world; (2) embodied control and self-regulation can ensure coordination between behaviors of machines and their
environment; (3) intelligent farming machines are characterized by the ability to interact, learn, and grow autonomously.
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Embodied  intelligence  is  a  term  first  proposed  in  1948  by
Alan  Mathison  Turing,  the  father  of  artificial  intelligence.
As  suggested  by  the  word “embodied”,  it  is  a  form  of

intelligence in which the body and intelligence are inseparable. In
contrast,  disembodied  intelligence,  is  a  form  of  intelligence  in
which the body and intelligence are separated. At the Dartmouth
Conference  in  1956,  Claude  Elwood Shannon and his  colleagues
defined  disembodied  intelligence  as “artificial  intelligence” (AI).
We  add  the  word “interactive” to  the  title  of  this  article  to
emphasize interactions in machines.

The  potential  of  ChatGPT[1] released  by  OpenAI  to  replace
Google Search is under an intense debate in academia. ChatGPT
can interact intuitively with humans via conversations. According
to Albert Mehrabian’s 7-38-55 rule of personal communication[2,3],
55%  of  information  exchange  during  human  interactions  is
achieved  through  nonverbal  cues  such  as  facial  expression,
posture,  and  body  language;  another  38%  is  realized  via  audio
cues, such the tone, emotion, intonation, and speed of the speech;
the remaining 7% is conveyed through words. ChatGPT is solely
reliant on words.

As can be seen, interactions play a crucial role in the embodied
cognition. Embodied intelligence could be both the origin and the
destination of human cognition, which may have originated from
action  and  mimicry.  Initially,  body  language  results  in  abstract
thoughts,  and action is  the  external  manifestation of  intelligence.
This  is  called  embodied  intelligence.  Body  movements  are  silent
language.  Similar  to  dancers  using  actions  for  artistic  expression,
machines  use  actions  as  a  manifestation  of  interaction.  For
example, the anti-lock braking systems stabilize cars and increase
movement  precision,  while  intelligent  and  dexterous  hand
movements  gently  serve  tea  or  rice  to  the  elderly.  If  driverless
wheeled  robots  used  for  urban  traffic  cannot  recognize  the  sign
language  of  the  traffic  police  and  ride-hailing  gestures  of  the
pedestrian, they should not be allowed to drive. Autonomous cars
should  have  an  excellent  sense  of  positional,  directional,  and

geographical  awareness,  as  well  as  qualified driving performance.
In  this  case,  it  is  necessary  to  have  embodied  intelligence
comparable to that of a human-driven car. This requirement also
applies to those intelligent farming machines. 

1    Deep  Learning  Should  Be  Performed
Iteratively  via  Real-Time  Interactions  with  the
External World
Learning results in the creation of memories, and memory-based
intelligence  generally  supersedes  computational  intelligence.
Advancements  in  deep learning have  facilitated  the  development
of  highly  capable  AI  that  extends  beyond  the  conventional
“programming-limited” paradigm in which pre-written programs
are  interpreted  to  create  intelligence.  In  deep  learning,  labels,
rather  than  memories,  are  used  to  directly  extract  classification-
related  knowledge  from  large  datasets.  The  parameters  of  the
algorithm are then amended with data, indicating the arrival of a
new machine-learning era.

However,  deep  learning  has  certain  limitations  due  to  its
intrinsic  inadequate  explainability.  These  limitations  are  as
follows:
● Training samples are generally provided in the nonsequential

third- or  fourth-party  perspective  instead  of  the  active  collection
with a consistent perspective from the machine’s “self”.
● Multichannel cross-modal perception is seldom used in deep

training,  particularly  in  tasks  pertaining  to  vision,  language,  and
body action.
● Although labeling is crucial for deep learning, it is expensive,

as stated in the adage “the amount of intelligence you get depends
on how much labor you put in”.
● Deep  learning  has  no  selective  attention  mechanism,

preventing  effective  interpretation  of  new  observations  from
current job and long-term memories. 
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● The universality and robustness of the system are poor, with
biases  in  data.  Algorithms  become  vulnerable  to  attack  with  the
use of adversarial samples.
● Training  large  neural  networks  using  large  models  and

numerous parameters is computationally taxing.
● Deep  learning  models  is  unable  to  accomplish  online  real-

time  learning.  For  example,  if  a  machine  is  commanded  to
recognize new image objects,  the model should be first  amended
and then retrained with  new data.  This  hinders  the  autonomous
growth of intelligent machines.

Yann LeCun, a Turing award winner,  proposed a scenario for
future  deep  learning[4],  which  consists  of  six  modules,  i.e.,  the
configurator,  perception,  world model,  cost,  short-term memory,
and  actor.  The  configurator  provides  executive  control  for  the
configuration  of  other  modules.  The  perception  module  receives
sensory  signals  from  the  physical  world  to  estimate  the  current
status of the system. The cost module evaluates the actions of the
machine  based  on  energy  minimization.  Short-term  memory
remembers the world model  and can enhance or  slightly  modify
the world model.  The actor module computes action commands
based on the current system state and executes these commands.
This model provides satisfactory results; however, there is a lack of
human control and interaction with the machine. Therefore, deep
learning should be performed iteratively via interactions with the
external world. 

2    Embodied  Control  and  Self-Regulation  Can
Ensure  Coordination  between  Behavior  of
Machines and Their Environment
A  farming  machine  needs  to  be  coordinated  with  the  soils,
footpaths, and plants of the field prior to the use. Thus, it is critical
to  ensure  the  coordination  between  the  behaviors  of  these
machines  and  their  environment  via  embodied  control  and  self-
regulation.

“Turing  computability” laid  the  foundations  for  brute  force
computation.  In  200  BC,  Archimedes  improved  the  precision  of
the numerical estimation of Pi (π) from 3.1 (which stood for 1 700
years) to 3.14; in 500 AD, Chongzhi Zu computed π to 3.141592.
It takes 2400 years for the π value to move from 2 decimal places
to 6 decimal places.  But a  Turing machine used only 70 years to
improve  the  precision  of  π  to  1012  decimal  places.  This
exponential improvement in computational power exemplifies the
precision  of  the  Turing  machine  and  brute  force  computation.
However, even Turing machines have limitations.

Multichannel  cross-modal  interaction  is  an  integral  part  of
embodied machine intelligence. As behavioral interactions are the
manifestations  of  the  exploration  and  feedback  processes  of
machine  cognition,  a  cognitive  machine  should  be  able  to  learn
and grow through its interactions with the environment. The von
Neumann  computer  architecture  only  has  inputs  and  outputs,
which  generally  lags  behind  the  cognitive  machine.  The  lack  of
multichannel cross-modal perception and interaction has become
a  major  flaw  for  computerized  intelligent  machines,  thus
necessitating the development of cognitive machines.

Cognition is an “upwards spiral” of perception, cognition, and
action;  meanwhile,  cognition  is  inseparable  from  perception  and
action. To create an intelligent machine, we need to overcome the
the  limitations  of  the  Turing  machine.  These  limitations  include
(1)  the total  focus on cognition,  without  considering interactions
between the machine and the environment, and (2) the focus on
computation without considering memories.

Learning  is  an  interactive  process  characterized  by  guided

learning or self-learning. Natural evolution has equipped mankind
with  excellent  short-term,  working,  and  long-term  memories,
allowing  us  to  conceptualize  time.  Time  is  the  cornerstone  of
human  cognition  as  our  memories  enable  the  maintenance  of
cognitive  continuity  and  the  accumulation  of  knowledge,  thus
human civilization and history came into being. Humans rely on
memory  to  form  boundaries  that  constrain  and  shape  their
thoughts,  and  memories  always  supersede  calculation.  As
intelligence  normally  exists  in  many  forms  and  modalities,  it  is
inappropriate  to  confine  the  definition  of  intelligence  to “the
ability to compute”.

Turing is  regarded as “the father of  artificial  intelligence” with
his 18 years of dedication to studying artificial intelligence. In a life
span of 42 years, Turing published a paper on Turing machines at
24 , followed by an 18-year research on AI. His seminal paper in
1950,  Computing  Machinery  and  Intelligence,  openly  broached
the  subject  of  whether  machines  were  capable  of  thought[5].  He
analyzed  and  refuted  nine  common  objections  against  thinking
machines  and  proposed  the  concept  of  teaching  machines  for
improved learning.  Furthermore,  he concluded that  if  a  machine
cannot be differentiated from a human from their verbal behavior
(i.e.,  in  conversation),  then  the  machine  has  the  ability  to  think
and is intelligent. This was subsequently used as the “Turing test”.
In  his  opinion,  a “child  program” can then be  instructed until  it
reaches adult intelligence.

However,  Turing’s  proposal  has  yet  to  undergo  a
comprehensive evaluation globally.  For example, limited research
has  been  conducted  on  the “child  program’,  i.e.,  imparting  the
“cognitive  core  of  a  child” into  a  program  and  subsequently
teaching  the  machine,  guiding  its  learning,  and  making  it  self-
sufficient.  Analysis  of  Turing’s  refutations  against  the  nine
common  hindrances  to  thinking  machines  reveals  that  these
refutations essentially critique the current fear of machines.

Norbert  Wiener,  the  father  of  control  theory,  published  the
book Cybernetics: Or Control and Communication in the Animal
and the Machine[6] in 1948. He stated that if we use, to achieve our
purposes,  a  mechanical  agency  with  whose  operation  we  cannot
efficiently interfere once we have started it, because the action is so
fast and irrevocable that we have not the data to intervene before
the  action is  complete,  then we had better  be  quite  sure  that  the
purpose  put  into  the  machine  is  the  purpose  which  we  really
desire  and not  merely  a  colorful  imitation of  it.” John McCarthy
postulated that “AI should have been called control theory, as it is
the  automation  of  intelligence.” Wiener  claimed  that “control  is
the pursuit of negative entropy, and negative feedback can be used
to  ensure  the  stability  of  a  machine’s  embodied  behavioral
intelligence.” In  this  vein,  self-control  is  the  origin  of
reinforcement  learning,  and  any  reward  or  punishment  function
can  be  equated  to  a  negative  feedback  control  system  with  a
deviation of zero.

For  over  a  decade,  our  team  has  been  actively  researching  a
machine-driving  brain.  Although  different  from  that  of  Yann
LeCun  in  brain  architecture  (presented  in Fig.1),  it  is  equally
effective.

In short-term memory, positioning sensors, particularly devices
using  BeiDou  and  GPS  services,  are  required  to  provide
centimeter-level  navigation  precision.  Position  sensors  track  the
acceleration and the speed of a car; visual sensors capture images;
and radar sensors measure distance and direction. The data from
these  sensors  can  be  fused  to  create  a “driving  situation  map”,
which is then sent to the job memory. Similar to the human brain
that  has  long-term  memories  to  store  and  retrive  driving  maps
and  traffic  rules,  it  is  necessary  for  the  driving  brain  to  have
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memory  sticks  for  such  functions.  The  human–machine
interaction  is  also  necessary  for  performing  route  planning.  The
driving  brain  should  be  able  to  learn  to  make  independent
decisions, and the movement of the car can be controlled through
the  control  platform and  three  controller  area  network  buses.  In
our  opinion,  in  the  future,  deep  learning  can  be  perfected
iteratively  to  learn  via  real-time  interactions  in  addition  to
pretraining and preprogramming.

Highly paid “prompt engineers” were hired to ensure effective
training of ChatGPT. Similarly, “guide engineers” should train self-
driving farming machines; thus, experts in farming techniques can
be  asked  to  teach  farming  machines  to  work  autonomously.  In
Fig.  2,  the physical  space is  displayed in blue,  the cognitive space
in light blue.  All  learning and deductive processes are performed
in physical and cognitive spaces.

As shown in Fig. 2, in the cognitive space, short-term memories
are  formed  from  situational  awareness  and  cross-modal  sensor
fusion.  In  the  job  memory,  a “decision-making  blackboard” for
current driving situation can be used to compute driving decisions
(such  as  waiting  at  a  junction,  overtaking  a  car,  or  switching
lanes).  Furthermore,  memories  are  extracted  from  long-term
memory  to  change  the  current  driving  status  based  on  selective

attention and right of way. Meanwhile, the physical space is used
for controlling the car.  Here,  the data from the pose and motion
sensors  are  used as  feedback for  the  operational  behaviors  of  the
care  to  keep  it  moving  in  accordance  with  the  driving  decisions
made  by  the  driving  brain.  Environmental  data  from  the
surroundings  of  the  car  can be  simultaneously  collected,  and the
inputs  of  the  cognitive  space  are  dynamically  adjusted  following
changes in the environment.

The  physical  architecture  is  thus  a “perception–cognition–
action” architecture  with  an  embedded  control  circuit  used  for
preprogramming  via  human–machine  communication,  thereby
fulfilling the responsibility of a “guide engineer.” The processes of
human  teaching,  self-learning,  and  machine  understanding  the
objectives  of  human-defined tasks  can be referred to as “mission
alignment,” which  allows  the  machine  to  precisely  complete  its
tasks and manifest its embodied intelligence. 

3    Intelligent  Farming  Machines  Determine  the
Ability  to  Interact,  Learn,  and  Grow
Autonomously
Intelligent  farming  machines  are  not  constrained  by
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computational power, algorithms, and data and should be capable
of  interaction,  learning,  and self-growth.  It  can be stated that  the
abilities to interact, learn, and grow autonomously are the defining
characteristics of next-generation intelligent machines. First, let us
consider  the  past:  why  those  tools  from  the  agricultural  age  and
machines from the industrial era are unable to think?

The  tools  of  the  agricultural  era  comprised  two  elements:  a
solid  matter  and  a  virtual  structure,  with  the  structure  directly
parasitizing  the  matter  to  form  a  hard  structure.  Why  does  the
structure  parasitizes  matter?  Let  us  consider  wheels  from  the
agricultural  era.  Sap  from  natural  tree  trunks  was  heat  bent,
hardened  into  a  circular  shape,  and  subsequently  affixed  to  a
vehicle. The raw material was then transformed into a tool called
wheels.  In  human  history,  the  significance  of  the  wheel  is
comparable to the invention of fire.

Machines  from  the  industrial  era  comprised  three  elements,
namely matter, energy, and structure, where the structure directly
parasitizes  matter  and  energy  to  form  a  hard  structure.  For
example,  in  a  clock,  the  swinging  pendulum  is  a  structure  that
directly  parasitizes  matter  and  energy  to  move  in  a  precise
manner.  Similarly,  the  steam  engine  and  generator  are  examples
in  which  the  structure  directly  parasitizes  matter  and  energy.
However,  time  was  not  considered  in  industrial-era  machines;
even clocks  just  displayed time as  a  readable  number.  Therefore,
the  definition  of  time  by  Einstein  was  critical:  as  time  is  just  a
readable  number  on  a  clock,  it  makes  no  contribution  to  the
precise movements of the clock itself.

Machines from the AI age have four elements:  matter,  energy,
structure, and time. Due to major changes during the AI age, the
“view  of  life” machines  in  this  era  can  be  explained  from
perspectives of cognitive and behavioral layers. Matter and energy
are the physical representations of the physical layer. Structure and
time  are  the  abstract  concepts  in  the  cognitive  layer.  Structure  is
utilized  to  describe  the  topological  (geometric)  relations  of
structure,  while  time  is  utilized  to  decribe  the  motions  and
changes of matter in space, and the flow and exchange of energy.
Structure  and  time  parasitize  matter  and  energy  to  form  a  hard
structure,  and the information contained within the machine are
“soft” structures, or “spirit”, which can parasitize a hard structure
or other existing soft structures, act independently, and reuse itself
appropriately.  Therefore,  the  organization  of  these  machines
allows  the  maintenance  of  their  self  and  generation-ordered
events, manifesting as thought and behavior. For example, a self-
driving  car  has  a  hard  structure  that  consists  of  the  chassis,
integrated circuits, and driving brain of the car. The soft structures
(software)  include  the  programming  of  the  driving  brain,  maps,
and  traffic  rules.  Because  the  machine  can  conceptualize  time,  it
can  maintain  order  and  function  independently  and
autonomously, which results in the ability to think.

Figure  3 reveals  the  relationship  between  matter,  energy,
structure,  and  time.  The  top  half  is  the  cognitive  space,
representing  the  thoughts  of  the  machine.  The  lower  half
represents the physical space, i.e., the actions of the machine. The
part  located  between  these  two  reveals  that  structure  and  time
parasitize matter and energy to form a hard structure. The wheel
is an example of such a (hard) structure. By filling the gap between
matter and energy, these hard structures increase the difficulty of
separating  information  and  matter.  Currently,  integrated  circuits
are  the  most  prominent  example  of  these  hard  structures,  and
they  represent  the “bottleneck” of  AI.  Soft  structures  are  highly
diverse,  and  they  can  be  categorized  into  low- and  high-level
structures. Soft structures are the elements of thought that support
abstract,  logical  (language),  and  intuitive  thoughts;  they  are

manifestations  of  the  imagination  and  creativity  of  mankind  as
well  as  the  spiritual  world.  Furthermore,  these  soft  structures
exhibit  a  sense  of  space,  time,  and  hierarchy.  Low-level  soft
structures  include  symbols,  letters,  strokes,  numbers,  front  and
back, left and right, up and down, ordering, and fast and slow. Soft
structures are not natural languages because a child can think even
without  learning  language;  linguists  call  this  phenomenon “the
language  of  the  heart”.  Concepts,  news,  information,  and
knowledge  are  all  upper-level  soft  structures  because  they  are
mirror  and  abstracted  images  of  the  physical  world  in  the
cognitive  space,  which  form  a  virtual  reality.  A  language  is  an
upper-level  tool  that  conveys  human  thought.  Currently,  the
reality imagined in the cognitive space is called virtual reality, and
the  cognitive  space  the  metaverse.  Hard  and soft  structures  have
been  used  to  fill  the  gaps  between  matter,  energy,  and
information,  creating  an  entangled  state  between  matter,  energy,
structure,  and  time.  This  interconnection  is  analogous  to
Schrodinger’s cat.

Is  intelligence  corporeal  or  spiritual?  Let  us  use  music  as  an
example to explore this phenomenon. Sheet music produced by a
composer is  a soft  structure that expresses information, emotion,
technique,  art,  style,  and  culture.  The  same  sheet  music  can  be
expressed  using  various  types  of  hard  structures  (instruments),
such  as  violin,  piano,  or  drum,  with  only  the  sheet  music  being
constant.  Sheet  music  is  spiritual,  virtual,  and  noncorporeal;
however, the music heard by human beings in the physical realm
is an acoustic art  that is  material,  embodied,  and objective being.
This  physical  embodiment  is  embedded  in  matter,  energy,
structure,  and time.  The combination of  these  four  elements  is  a
manifestation  of  beauty  and  the  fusion  of  cognition  and  action.
Furthermore, hard structures can be locally transformed into soft
structures,  such  as  virtual  robots  and  hosts.  Similarly,  soft
structures  can  be  locally  transformed  into  hard  structures.  For
example, the robot in the slide and the wheeled robots developed
by  AIForceTech  can  interact,  learn,  and  grow  autonomously.
Therefore, corporeal and spiritual are interconnected, but software
cannot define everything.

Schrodinger,  who used  the  physical  perspectives  of  living  cells
to explain life, speculated that life is a machine. His ideas allow us
to understand why machines can be considered alive−this is what
we call the “view of the life of machines”. The physical layer of life
corresponds  to  the  matter  layer  of  the  machines;  the  biological
layer  of  life  corresponds  to  the  electronic  circuitry  and  machine
instructions  in  the  machines;  the  psychological  layer  of  life
corresponds  to  the  control  system  and  middleware  in  the
machines and the cognitive layer of lifen corresponds to high-level
software  and  data  of  machines.  This  reveals  the  importance  of
four elements, namely matter, energy, structure, and time. A clock
relies  on  energy;  time  relies  on  clocks,  order  on  time,  and  soft
structures  parasitize  hard  structures.  Meanwhile,  the  machines
independently achieves automation of thought and autonomously
grow their cognitive capabilities via self-reuse. The operation of a
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machine relies on programming, which relyies on the sequencing
of  codes,  and  software  on  interaction.  As  sequencing  and
interactions lead to the generation of  negative entropy,  machines
rely  on  negative  entropy  to “live”.  As  the  clock  never  stops,  the
machine  never  stops  interacting  with  its  external  world,  and  its
thought and cognitive processes will continue endlessly.

An  analysis  of  over  200  definitions  of  intelligence  shows  that
the  term  has  been “loosely” defined.  Intelligence,  cognition,  or
thinking  can  be  broadly  defined  as  the  cultivation  and
transmission of the ability to learn how to solve pre-set problems,
interpret, and solve real problems.

In  the  cognitive  space,  cognitive  and  thinking  capabilities  are
attained  via  computational  and  memory  intelligence,  whereas  in
the physical space, embodied interaction capabilities are obtained
through  perceptual  and  behavioral  intelligence.  Therefore,
perception  and  cognition  form  an  endless  loop.  In  perceptual
intelligence,  spatiotemporal  recognition  is  the  synchronization  of
positioning,  navigation,  and  time,  integrating  target  and  facial
recognition.  The  cultivation  and  transmission  of  the  ability  to
solve  pre-set  problems  is  learning,  considered  as  a  subset  of  real
problems.  Once  a  problem  is  solved,  knowledge  will  remain.
Machines  can  accept  guided  teaching  and  self-learning.  To
improve the ability to explain and solve real problems, the pre-set
problems of where, how, why, and what should be solved.

The  learning  and  operational  processes  of  an  intelligent
farming machines in a field consists of guided learning tasks such
as  pre-configuration,  assigning  tasks,  providing  guidance,
answering  questions,  cognition  through  interaction,  and
supervision.  Self-learning  is  a  critical  process  that  involves
converting  the  results  of  guided  learning  into  long-term
memories,  undergoing  processes  such  as  revision  and  digesting
knowledge.  If  we refer  to  guided learning as  supervised learning,
such a labeling would be an oversimplification of categorizing self-
learning as unsupervised learning.

Therefore,  the  learning  processes  of  an  intelligent  farming
machine should cover three processes: (1) manual operation of the
farming  machine  to  teach  the  robot;  (2)  robot  operates  the
farming  machine  with  manual  intervention  from  a  human;  (3)
robot  operates  the  machine  autonomously  and  conducts  self-
learning.  The  continuous  iteration  of  these  processes  results  in
guided  learning,  semi/weakly  supervised  learning,  and  self-
learning.  In  practice,  all  machine  learning  processes  follow  an
analogous  process.  However,  previous  studies  have  emphasized
the automation of L0 to L5 while neglecting learning, interaction,
and growth.

Let  us  consider  the “SenseRobot”,  a  Chinese  chess-playing
robot  from  SenseTime,  which  beat  three  generations  of
grandmasters  Hu  Ronghua,  Xie  Jing,  and  Gu  Bowen.  The  robot
has  26  levels  of  difficulty  and  more  than  100  endgame  settings.
Furthermore,  the  robot  can  autonomously  monitor  changes  on
the  board  and  calculate  moves  accordingly.  The  dexterous  robot
can pick up and place chess pieces precisely to the millimeter level.
Furthermore,  it  can  respond  within  seconds,  exhibiting  perfect
“hand-eye” coordination, clean movement, and a tight rhythm. Li
Xiaolong,  a  famour  Chines  chess  player,  stated  that  the
SenseRobot is an excellent opponent and training partner. It is not
just  another  AlphaGo  program;  it  is  a  robot  with  arms  that  can
pick  up  and  place  chess  pieces  and  is  equipped  with  mechanical
eyes  to  see  the  chessboard.  This  robot  has  beaten  many  Chinese
chess  champions,  and  it  successfully  passed  one  after  another
Turing  test.  But  it  remains  to  be  seen  why  SenseRobot  was  not
equipped with voice interaction ability, despite its being equipped
with  four  elements  of  perception,  cognition,  behavior,  and

interaction.  Is  it  able  to  learn?  If  the  model  is  placed  in  a  chess
institute  or  made  to  learn  from high-level  Chinese  chess  players,
then could it grow and lead to some innovation?

An  embodied  intelligence  grows  iteratively  from  each
conversational  Turing  test  it  undergoes.  Conversational  Turing
tests are highly diverse and casual, with all coding languages based
on  natural  languages.  Thus,  Turing’s  proposal  to  use
conversations  as  Turing  tests  is  highly  insightful.  The  use  of
language marks an excellent achievement for machine intelligence.
However,  sound,  words,  and  symbols  used  in  coding  languages
have certain limitations as  they are  constrained by the axioms of
natural-language  expressions.  Therefore,  these  models  could  be
somewhat formalized following a “math first and physics second”
principle that obeys Gödel’s incompleteness theorems. To impart
thinking ability to a machine, the latter’s working language should
be  formalized;  when  formalization  is  conducted,  mechanization
and the  subsequent  automation should be  performed.  Regarding
automation,  machines  can surpass  mankind in the profundity  of
thought.

The  Turing  test  can  be  performed  in  many  fields  and  diverse
areas. In social dialogues, the Turing test can be conducted in the
form of  conversations.  In literary linguistics,  it  can be performed
by a machine mimicking an actor. In gaming languages, it is using
games such as Go. In mathematics,  the machine can be tested to
define  proofs.  In  arts,  the  machine  could  be  modified  to  create
pieces  of  artwork.  When  it  comes  to  the  Tang  and  the  Song
poetry,  the  machine  could  be  requested to  create  new poems.  In
law,  the  Turing  test  could  be  performed  with  the  machine
providing  legal  advice.  In  the  physical  language,  the  Turing  test
can  be  performed by  creating  intelligent  farming  machines.  This
shows  a  need  for  intelligent  farming  machines  to  be  able  to
communicate  via  vocal  sound.  In  the  future,  conversational
Turing tests are expected to be more diverse and casual. 

4    Conclusion
The  essence  of  thought  is  abstraction  and  association,  analogous
to creating and linking soft structures. Having intelligent machines
learn  from “casualized” Turing  tests  can  result  in  embodied
intelligence. With increasing replacement of humans by machines
in intellectual and technical tasks, it remains a challenging work to
train  machines  for  highly  specific  positions  in  various  fields  and
industries.  In  the  future,  in  addition  to  learning  and  working
alongside  machines,  humans  can  teach  machines  to  learn  and
work.  The  result  of  learning  is  minute  adjustments  to  the  long-
term memories of a machine, that is, the network topology of AI
neurons and self-learning——a critical process for converting job
memories into long-term memories. Machines can easily replicate
this process on a large scale and continue learning by themselves.
By interacting with machines in such a manner, humans can also
learn from machines and collaborate with machines to create and
innovate,  e.g.,  robot  engineers  will  create  formulations  for  new
materials  and  robot  scientists  propose  new  scientific  hypotheses,
thus driving scientific and technological discoveries.

The interactive embodied intelligence of machines refers to the
intelligence  to  learn  and  eventually  create.  The  significance  of
machine  intelligence  to  human  intelligence  is  like  telescope  to
astronomers  and  microscope  to  biologists.  By  expanding  the
memory  and  computational  intelligence  of  humans,  machine
intelligence  can  relieve  mankind  of  heavy  and  repetitive  work.
Crucially,  the  capacity  of  machine  intelligence  for  brute  force
computation  will  increase  man–machine  collaborations  to
facilitate engineers and scientists for further invention, discoveries,
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and  creation.  By  then,  mankind  will  not  consider  whether  an
innovative  technology  or  paradigm  is  created  by  machines  or
humans.
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