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ABSTRACT
Heterogeneous  unmanned  aerial  vehicle  (UAV)  swarms  have  garnered  significant  attention  from  researchers  worldwide  due  to
their  remarkable  flexibility,  diverse  mission  capabilities,  and  wide-ranging  potential  applications.  Mission  planning  stands  at  the
core  of  UAV  swarm  operations,  requiring  consideration  of  various  factors  including  mission  environment,  requirements,  and
inherent characteristics. In this paper, we investigate the model of the cooperative tasking problem in heterogeneous UAV swarms.
We provide  a  comprehensive  review of  artificial  intelligence  algorithms applied  in  UAV swarm mission  planning,  analyzing  their
strengths  and  weaknesses  in  multi-UAV  cooperative  environments.  By  discussing  these  key  techniques  and  their  practical
applications,  the  article  highlights  future  research  trends  and  challenges.  This  review  serves  as  a  valuable  reference  for
understanding the current state of AI algorithm applications in heterogeneous UAV swarm task assignments.
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U nmanned  aerial  vehicles  (UAVs)  are  characterized  by
high  survivability,  low  cost,  and  flexibility[1],  and  are
important  combat  equipment  in  modern  warfare.  After

decades  of  research,  UAV-related  technologies  have  made
remarkable  progress  and  become  more  and  more  versatile,
especially  in  surveillance[2, 3],  photogrammetry[4],  agriculture[5, 6],
military[7],  and  civil  security[8],  which  have  a  wide  range  of
applications. From a military perspective, for example, UAVs have
now  become  an  increasingly  important  military  tool.  On  the
battlefield,  unmanned  aerial  vehicles  can  gather  intelligence,
reconnoitre  the  enemy  and  carry  out  strike  missions  without
being  attacked  by  the  enemy,  among  other  things[9].  From  the
perspective of the civilian industry, UAVs can be used to monitor
the  condition  of  farmland,  apply  fertilizers  and  spray  pesticides
accurately, thereby improving the yield and quality of agricultural
products. In the construction and real estate industries, UAVs are
used for  site  monitoring  and land mapping,  helping  to  plan  and
design  construction  projects  and  improve  engineering  efficiency.
UAVs  also  play  a  key  role  in  environmental  monitoring,
monitoring air and water quality, tracking wildlife protection and
being used for early environmental  warnings.  In addition,  UAVs
technology  is  playing  an  active  role  in  areas  such  as  power  and
infrastructure  maintenance  and  medical  rescue.  Analysis  shows
that  the  growing  trend  of  UAV  applications  in  these  areas  will
continue,  and  the  need  to  increase  efficiency,  reduce  costs,
minimize  risk  and  provide  accurate  data  will  continue  to  drive
UAV technology.

However,  the  mission  execution  capability  of  a  single  UAV
shows  certain  limitations,  in  the  face  of  today’s  increasingly
complex combat environment and multi-mission requirements[10].
Firstly,  due  to  the  limitation  of  on-board  sensors  and
communication  equipment,  a  single  UAV  has  limited  ability  to
perceive the mission environment; secondly, due to the limitation

of its own fuel, the UAV has limited flight time and does not have
the  capability  of  high-intensity  sustained  combat;  thirdly,  once  a
single  UAV  is  affected  by  a  failure,  the  efficiency  of  mission
execution will be drastically reduced, which may even lead to the
termination  of  the  mission  in  serious  cases[11].  Therefore,  the
current  application  of  UAVs  is  gradually  developing  towards
clustering,  and  multiple-UAVs  working  together  as  a  team  will
become  a  new  mode  of  combat[12, 13].  Recently,  developments  in
multi-intelligence  cooperative  control  have  facilitated  mission
synergy  for  UAV  swarms  in  hazardous  and  uncertain
environments[14–20].

UAV  clusters  include  homogeneous  UAV  clusters  and
heterogeneous UAV clusters. Homogeneous UAVs refer to UAVs
with  the  same  combat  capability  and  combat  mode,  on  the
contrary,  heterogeneous  UAVs  refer  to  multiple  types  of  UAVs
with  different  combat  capabilities,  which  can  include
reconnaissance aircraft, fighters, and so on[21, 22]. The application of
homogeneous  multi-UAVs  in  the  Internet  of  Things  (IoT)
promotes efficient airborne data transmission.  This  technology is
particularly suitable for operational scenarios with a single mission
objective, simple combat scenarios and low mission complexity[23].
However,  with  the  complexity  of  combat  scenarios  and  the
diversification of mission types, homogeneous UAV clusters with
a single function are unable to complete complex missions alone,
and the level  of  intelligence and heterogeneity  of  the multi-UAV
cooperative  combat  system  is  gradually  increasing,  and
heterogeneity will be the main direction of the future development
of UAV[10].

The  heterogeneous  multi-UAV  task  allocation  problem  is  a
class  of  complex  combinatorial  optimization  problems,  which
belongs to the category of task assignment and resource allocation.
The problem mainly refers to assigning one or more ordered tasks
to  each  UAV  based  on  certain  environmental  information  and 
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task  sets,  so  that  the  overall  performance  of  the  entire  UAV
formation  is  optimized  while  the  tasks  are  completed,  given  that
the types or numbers of UAVs are known[24, 25].  This problem can
be  divided  into  two  subproblems:  task  allocation  and  trajectory
planning[26, 27]. Obviously, the optimization of task allocation has an
important  impact  for  the  operational  efficiency  of  UAVs.
Therefore,  solving  the  task  allocation  problem  of  heterogeneous
UAVs has become a prominent and important issue in the field of
multi-UAV control[28].

The rest of the paper is structured as follows. Section 1 provides
a  brief  overview  of  two  classes  of  models  used  to  solve  the
heterogeneous  UAVs  cooperative  multi-tasking  problem.  In
Section 2, the basic framework of group intelligence algorithms is
summarized and the current research status of a variety of typical
algorithms  is  presented,  In  Section  3,  future  research  challenges
and  development  directions  for  the  multi-UAV  collaboration
problem are discussed. Section 4 concludes the paper. 

1    Collaborative  Task  Assignment  Model  of
Heterogeneous UAV
The heterogeneous properties of UAVs include differences in the
weapons  they  carry,  their  functions,  and  operational
characteristics.  The  heterogeneous  UAV  cooperative  tasking
problem refers to a combinatorial optimization problem that gives
multiple  UAVs  with  different  performance  to  find  a  feasible
solution to perform multiple tasks on multiple targets[29]. This issue
requires  not  only  the  development  of  realistic  distribution  plans,
but  also  ensuring  the  rapid  and  stable  implementation  of  the
distribution.  As  shown  in Fig.  1,  a  simple  scenario  graph  of
multiple  heterogeneous  UAVs  for  mission  planning  with  three
UAVs  of  different  performances,  each  UAV  performs  different
missions  (detection  mission,  attack  mission,  confirmation
mission, etc.) on the target satisfying the relevant constraints. Two
types  of  classical  models  for  the  UAV  cooperative  multiple  task
assignment problem are given below. In the first problem model,
we examine UAVs equipped with different quantities of weapons,
incorporating  a  finite  limit  on  the  number  of  weapons  as  a
constraint in the problem. In the second model, we also consider
UAVs  with  different  characteristics  (reconnaissance,  attack,  etc.),
each  of  which  is  assigned  a  specific  task  based  on  its  capabilities
and the task adheres to prioritization requirements. 

1.1    Modeling  of  UAV  tasking  problem  based  on  carrying
different number of weapons
There  is  flexibility  in  the  choice  of  performance  metrics  for
addressing  the  UAV  cooperative  tasking  problem.  In  the
following,  we  discuss  two  specific  metrics:  the  first  one  is  to
minimize  the  time  required  for  the  entire  UAV  swarm  to
complete  all  the tasks,  i.e.,  to  minimize the longest  working time
among all the UAVs; and the second one is to minimize the total
flying  distance  of  the  UAVs  while  performing  all  the  tasks.  It  is
assumed that all UAVs have constant and uniform speeds.

Shima  and  Schumacher[30, 31] selected  the  first  criterion,  the
scenario examined involves two different types of UAVs: ground-
attack  UAVs  equipped  with  large-area  ground  moving  target
indication  (GMTI)  Doppler  radars,  and  a  category  consisting  of
multiple  smaller  UAVs  with  ground-attack  capability,  equipped
with smaller-area GMTI Doppler radars. They operate together to
detect  and  engage  moving  targets  on  the  ground.  Targets  are
designated  by  human  supervisors  or  external  agents.  The  long-
range UAVs orbit outside the area of interest and maintain a fixed
visual  contact  with  the  targets.  It  can  continuously  track  targets
that  meet  certain  speed  criteria.  This  alternative  UAV  can  also
track  and  attack  targets.  In  order  to  reduce  the  uncertainty  of
target locations, two UAVs are responsible for tracking each target
at appropriate angular intervals. While conducting the assault, the
targets  in  the  area  are  tracked  by  an  alternate  UAV  cooperating
with  the  standoff  UAV  or  by  another  alternate  UAV.  The
challenge is  to automate tasking and path planning to meet tight
time  constraints  for  effective  target  tracking  and  engagement.
Shima and Schumacher[30, 31] set

U= {0, 1, . . . ,Qu},

Qu

Qu

represents the group of collaborating UAVs, where 0 indicates an
unarmed  stand-off  UAV  and  denotes  an  alternate  UAV
carrying  GPS-guided  munitions.  Fuel  constraints  are  not
considered  in  the  task  allocation  process.  The  set  of  targets  for
UAVs attack is

T= {1,2, . . . ,Qt}.

The  set  of  stage  in  which  three  UAVs  are  assigned  to  each
target is

S= {1,2, . . . ,Qs}.
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Fig. 1    Heterogeneous UAV swarm tasking scenario.

CAAI Artificial Intelligence Research

 

2 CAAI Artificial Intelligence Research | VOL. 3 Article No. 9150033 | 2024



Qu+ 1

Qs = Qt xl,mi,j,k ∈ {0, 1}
i, j,k ∈ U

i ̸= j ̸= k m ∈ T l
tl,mi,j,k

m l ∈ S l S

This  collection  of  targets  should  be  attended  to  by 
collaborating UAVs. As each target needs to be serviced by three
cooperating UAVs at a time, thus . Let  be the
decision  variable  which  is  equal  to  1  if  the  UAVs ,

 perform the prescribed task on target  in phase ,
otherwise it equals 0. Let  represent the amount of time taken
by  the  group  of  three  UAVs  to  complete  the  task  assigned  to
target  during phase ,  where  belongs  to  the  set .  Based
on these, he problem model is given:

min J1 = max
Qt

∑
m=1

Qu

∑
i=0

Qu

∑
j=0

Qu

∑
k=1

tl,mi,j,kxl,mi,j,k (1)

Such that:
Qt

∑
m=1

Qu

∑
i=0

Qu

∑
j=0

Qu

∑
k=1

xl,mi,j,k = 1, l ∈ S (2)

Qs

∑
l=1

Qu

∑
i=0

Qu

∑
j=0

Qu

∑
k=1

xl,mi,j,k = 1, m ∈ T (3)

Qu

∑
i=0

Qu

∑
j=0

xl,mi,i,j+
Qu

∑
i=0

Qu

∑
j=0

xl,mi,j,i+
Qu

∑
i=0

Qu

∑
j=0

xl,mi,j,j = 0, l ∈ S, m ∈ T (4)

xl,mi,j,k ∈ {0, 1}, l ∈ S, m ∈ T, i, j,k ∈ U (5)

m ∈ T
m

The constraint Eq. (2) indicates that at each stage there is only
one  goal  served  by  the  UAV  group,  Eq.  (3)  denotes  that
each goal  is served only once in all stage, Eq. (4) guarantees that
a  single  UAV  will  not  be  allocated  to  carry  out  multiple
assignments for a single target, i.e., each target is serviced by three
different UAVs.

k ∈ U\{0}
wk

Shima  and  Schumacher[31] explored  a  heterogeneous  trio  of
UAVs, each UAV is equipped with specialized sensors and all but
one is  armed.  In order to effectively attack the target,  two UAVs
must simultaneously track the target while the third UAV carries a
weapon  to  carry  out  the  attack.  Assuming  that  each  UAV

 carries  a  limited  number  of  strike  weapon  (denoted
by ), this restriction limits the number of times each UAV can
strike a target. The corresponding constraint is

Qs

∑
l=1

Qt

∑
m=1

Qu

∑
i=0

Qu

∑
j=0

xl,mi,j,k = wk.

Qm

The second performance criterion: sum of distances for all tasks
performed  by  UAVs  was  considered  by  Shima  et  al.[32] In  the
scenario  studied  in  Ref.  [32],  there  are  three  types  of  tasks  to  be
performed  by  UAV  swarms:  classify,  attack,  verify  and  is  a
quantity  of  such  tasks.  Task  allocation  must  consider  several
factors,  including  task  prioritization,  coordination,  time
constraints,  and  feasible  flight  paths.  It  is  important  to  note  that
tasks  related  to  each  target  must  be  executed  in  a  sequential
manner.  This  means  that  a  target  can  only  be  subjected  to  an
attack  after  it  has  been  categorized,  and  verification  of  the  target
can  only  occur  after  an  attack  has  been  carried  out  on  it.  In
addition,  each  task  only  needs  to  be  executed  once,  that  is,  task
coordination and UAVs are required to follow a flyable trajectory
to perform a specific task within a given time frame.

J2
yl,i,j

l i ∈ U

The objective is to minimize the cost function , which is given
by Eq. (6). The variable  is a binary decision variable that takes
a  value  of  1  when,  at  stage ,  UAV  is  assigned to  perform

j ∈ T
Yl = {y1,i,j,y2,i,j, . . . ,yl,i,j}
l cYl−1

l,i,j i
j
l Yl−1 rYl−1

l,i,j

bi
i U

the  specified  tasks  on  target ,  and  it  takes  a  value  of  0
otherwise.  Let  denote  the  distribution  of
tasks at stage  and  denote the distance between UAV  and
target ,  taking into account the assignment history that precedes
stage  as  denoted  by ;  represents  the  resource,  such  as
fuel, needed to execute the mission, while  denotes the available
resources for UAV  within the set .

min J2 =
Qs

∑
l=1

Qu

∑
i=1

Qt

∑
j=1

cYl−1
l,i,j yl,i,j (6)

Such that:
Qu

∑
i=1

Qt

∑
j=1

yl,i,j = 1, l ∈ S (7)

Qs

∑
l=1

Qu

∑
i=1

yl,i,j = Qm, j ∈ T (8)

Qs

∑
l=1

Qt

∑
j=1

rYl−1
l,i,j yl,i,j ⩽ bi, i ∈ U (9)

yl,i,j ∈ {0, 1}, l ∈ S, i ∈ U, j ∈ T (10)

j ∈ T
i ∈ U

Qm j
i ∈ U

The constraint  Eq.  (7)  denotes  that  the  target  has  a  task
assigned  to  UAV  at  each  stage.  Equation  (8)  denotes  that

 tasks need to be performed on target . Formula (9) indicates
that the total consumption of resources by each UAV  is not
more than its capacity. 

1.2    Modeling  the  UAV  tasking  problem  based  on  different
performances
The  cooperative  multiple  assignment  problem  is  a
computationally  intractable  problem.  In  order  to  implement  the
optimisation  process,  the  researchers  approximated  this  problem
as a graph based on the heading angle discretization[33–35].

Let

Tall = {T1,T2, . . . ,TQT},

QT

MT MT

denote  a  set  of  targets  with  known  locations.  Each  of  these
targets is assigned various tasks that require execution. During this
allocation  process,  the  UAVs  are  tasked  with  visiting  each  target
and accomplishing a set of  tasks, where  is a subset of

M= {C,A,V},

C A
As

Ad V
Ad

with  representing  classification,  representing  attack  (which
can  further  be  categorized  as  single  attack  or  double
simultaneous  attack  depending  on  the  target  type),  and 
representing verification.  consists of two strike tasks performed
by  two  different  UAVs.  In  addition,  the  mission  execution  by
UAVs  must  adhere  to  the  prioritization  requirement,  meaning
that  a  target  can  only  be  subjected  to  an  attack  after  it  has  been
classified,  and  it  can  only  be  verified  after  an  attack  has  been
executed on it.

QmT T ∈ Tall

QmT =MT

Ad

Let  denote  the  number  of  tasks  that  the  goal  is
made  to  execute,  so .  It  is  worth  noting  that  each  task
can  only  be  executed  once,  except  for  tasks ,  which  can  be
executed twice. Hence, the total number of tasks to be executed by
the UAVs in the entire scenario is denoted as
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Qall = ∑
T∈Tall

QmT .

QC QV

QAs QAd

QC,QV,QAs ,QAd ∈ [0,QT] QAs +QAd ⩽ QT

Suppose ,  represent  the  number  of  targets  to  be
identified  and  verified,  respectively,  and ,  represent  the
number of targets to be struck in a single strike and double strike,
where the integers  and ,
thus

Qall = QC+QV+QAs +2QAd .

QUThe set of  collaborative heterogeneous fixed-wing UAVs is

Uall = {Ut
1,Ut

2, . . . ,Ut
QU
},

twhere  represents  the  category  of  UAVs.  In  this  problem,  we
consider three different types of UAVs, as shown in Table 1.

Utilizing the set of heading angle discretizations denoted as

H= {ψi : ψi = 2πi/Qψ, i= 0, 1, . . . ,Qψ − 1},

Qψwhere the positive integer  represents the desired resolution for
heading  angles,  to  define  the  graphs.  The  set  of  vertices  in  the
graph is

VT = {(T1,ψ1), . . . ,(Ti,ψj), . . . ,(TQT ,ψQψ
)},

ψ ∈H Ti ∈ Tall ∥VT∥= QTQψ

where  each  node  is  identified  by  the  position  and  heading  angle
 of  a  target ,  such  that .  The  set  of

vertices for the initial position and heading of the UAVs is

{(Ut
1,ψ10

),(Ut
2,ψ20

), . . . ,(Ut
QU
,ψQU0

)},

∥VU∥= QU

V= VT∪VU ∥V∥= QV = QU+QTQψ

where .  The  set  of  all  vertices  in  the  graph  is
, , and the set of edges in the

graph is

E= {(vi,vj)|vi ∈ V,vj ∈ VT},

∥E∥= QE = QTQψ(QU+QTQψ)where .
Edison  and  Shima[35] and  Deng  et  al.[33] chose  to  minimize  the

cumulative  distance  flown  by  all  UAVs  and  minimize  the
execution time required for the UAVs to complete the task as the
objective functions, respectively. Since the UAVs fly at a constant
speed,  these  two  types  of  objective  functions  are  equivalent.  The
set

Pu = {(vi,vj)|Xu,k
(vi ,vj) = 1,vi ∈ V,vj ∈ VT,k ∈ {1,2,3}},

u ∈ Uallis  the connected path of  UAV .  In the following,  we give
an  example  of  a  model  for  the  task  allocation  problem  by
minimising the task completion time.

min J3 =
QU

∑
u=1

QV

∑
i=1

QTQψ

∑
j=1

3

∑
k=1

Xu,k
(vi ,vj)w

k
(vi ,vj) (11)

Such that：

QU

∑
u=1

QV

∑
i=1

Qψ−1

∑
l=1

3

∑
k=1

Xu,k
(vi ,(T,ψl))

= QmT , ∀ T ∈ Tall (12)

tC ⩽ tAs ⩽ tV (13)

tC ⩽ tAd1
= tAd2

⩽ tV (14)

QV

∑
i=1

QTQψ

∑
j=1

Xu,2
(vi ,vj) ⩽ na

u, ∀u ∈ Uall (15)

Xu,k
(vi ,vj) ∈ {0, 1}, ∀vi ∈ V,vj ∈ VT,k ∈ {1,2,3} (16)

Xu,k
(vi ,vj) = 1 e= (vi,vj)

u ∈ Uall k k= 1 k= 2
k= 3

Xu,k
(vi ,vj) = 0 wk

(vi ,vj) k
e= (vi,vj) u

where  denotes  the  edge  is  served  by  UAV
 performing task , with  for classification task, 

for  attack  task,  and  for  verification  task;  otherwise
.  is  the  cost  of  performing task  along the  edge
 for UAV .

tm (m= C,A,V)

na
u

na
u = 0

The  constraint  Eq.  (12)  represents  the  number  of  tasks  that
must  be  performed  for  each  target.   is  the
cumulative time from the start time of the target to the time of the
mission executed by the UAV. The constraints Formulas (13) and
(14) are time constraints that guarantee the priority of the mission
execution. The former applies to targets that require a single attack
and  the  latter  applies  to  targets  that  require  two  simultaneous
attacks.  The  last  constraint  Formula  (15)  states  that  weapon
resources are finite.  denotes the weapon limit of the u-th UAV.
For  reconnaissance  drones,  because  they  carry  no
weapons.

Jia et al.[34] emphasizes a cooperative multi-tasking problem with
random  speeds  and  flexible  time  windows.  They  develop  a  two-
stage  on-the-fly  planning model  with  the  objective  of  optimizing
task allocation in the first stage to minimize expected costs in the
second  stage.  The  first-stage  task  allocation  is  structured  in  a
manner consistent with the approach described above. 

2    Intelligent  Optimization  Algorithm  for  Task
Allocation
The task assignment problem for UAVs is generally characterized
as  cooperative  multi-tasking  assignment  problem  (CMTAP),
multiple  traveling  salesman  problem  (MTSP),  and  other
optimization  problems[32, 36].  There  are  two  commonly  used
solution  methods  for  these  problems:  traditional  optimization
algorithms  and  intelligent  optimization  algorithms.  The
conventional  techniques  such  as  mixed  integer  linear
programming (MILP)[37, 38], branch and bound (BAB) algorithm[37],
and  tree  search  algorithm  (TSA)[39, 40] can  obtain  the  optimal
solution. However, MILP and BAB involve many complex matrix
operations,  and  the  search  range  of  TSA  is  large,  when  solving
large-scale complex task allocation problems. As the problem size
increases, the efficiency decreases, making it challenging to obtain
the  optimal  solution  to  the  task  assignment  problem  within  a
reasonable time frame using traditional methods.

Intelligent optimization algorithms are developed by simulating
or  emulating  natural  phenomena,  processes,  and  intelligent
behaviors  observed  in  biological  communities.  These  algorithms
do not depend on the initial conditions and do not require a lot of
gradient  information,  which  can  avoid  the  high  computational
complexity  of  NP-hard  problems  and  efficiently  achieve  better
quality  solutions.  Therefore,  more  and  more  scholars  investigate

 

Table 1    UAV capabilities and assigned tasks.

Type Capability Task

Combat Surveillance and attack {C, A,V}

Surveillance Surveillance {C,V}

Munition Attack {A}
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the  application  of  intelligent  optimization  algorithms  to  task
allocation  problems. Figure  2 illustrates  the  intelligent
optimization algorithm’s process for addressing the multi-tasking
assignment  problem.  The  process  is  mianly  divided  into  five
stages. The first stage involves problem definition and preparation,
where  the  aim  is  to  articulate  the  problem,  gather  data,  choose
suitable  algorithms  and  coding  methods.  The  second  stage
encompasses  initialization,  which  includes  tasks  such  as
initializing  both  the  tasks  and  UAV  state,  selecting  the  initial
strategy, and defining the fitness function. These steps contribute
to furnishing the algorithm with an initial solution. The third stage
focuses  on optimization iteration,  where  the algorithm iteratively

refines  the  solution.  The  fourth  stage  involves  termination
condition judgment, where the algorithm continues iterating until
the  termination  condition  is  met.  Upon  satisfaction  of  the
termination  condition,  the  process  proceeds  to  the  final  stage:
result output and interpretation. In this section, we summarize the
typical  intelligent  optimization  algorithms  for  heterogeneous
UAV swarm collaboration. 

2.1    Genetic algorithm
The genetic algorithm is an optimization technique that emulates
the  process  of  evolution,  proposed  by  professor  Holland  of  the
University  of  Michigan  in  1969  and  developed  through
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Fig. 2    Basic framework of intelligent optimization algorithms for solving multi-tasking assignment problems.
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subsequent  research[41, 42].  It  is  based on the  principle  of  biological
evolution  and  is  used  to  solve  extreme  value  optimization
problems.  Genetic  algorithm  simulates  the  biological  genetic
mechanism  with  self-organization  and  self-adaptation
characteristics.  It  is  widely  used  in  the  fields  of  control,  science,
engineering, etc. Especially, it is excellent in dealing with complex
nonlinear  and  multidimensional  optimization  problems[43, 44].
However,  it  also  suffers  from  the  problems  of  insufficient  local
search  ability  and  slow  convergence  speed,  which  need  to  be
further  improved.  Genetic  algorithms  are  uniquely  suited  for
collaborative  task  assignment  of  heterogeneous  UAVs.  It  can
generate  adaptable  and  diverse  solutions  through  global  search,
adaptive evolution, and diversity maintenance.  Meanwhile,  it  can
solve  constraint  and  nonlinear  problems,  adapt  to  different
scenarios  with  interpretability,  and  improve  the  efficiency  and
performance of task allocation.

Considering  the  time  constraints  imposed  by  simultaneous
missions  and  the  interdependence  between  mission  assignment
and  path  planning  for  each  UAV,  in  order  to  reduce  the
computational  complexity,  Shima and  Schumacher[30] proposed  a
genetic  algorithm  that  efficiently  searches  the  feasible  solution
space and investigated the sensitivity to the performance of genetic
algorithm  tuning  parameter  variations.  This  algorithm  can
efficiently  explore  the  space  of  feasible  solutions  and  provide
monotonically  improved  solutions.  Its  performance  surpasses
randomized  search  and  can  be  applied  to  solve  large-scale
problems.  Under  the  constraints  of  task  priority  and  trajectory
limitations,  Shima  et  al.[32] established  a  genetic  algorithm.  Then
they  compared  the  performance  of  this  algorithm  with  the
randomized  search  method  and  the  deterministic  branch
delimited search method through simulations under two different
cost  functions,  showing  the  effectiveness  of  the  algorithm.  Good
solutions can be found by exploring the space of feasible solutions.
Therefore, the number of feasible solutions can serve as a measure
of  the  computational  complexity  of  the  problem.  The  algorithm
independently  performs  trajectory  optimization  for  each  stage,
leading to a significant reduction in algorithmic complexity. Deng
et  al.[33] introduced  an  enhanced  genetic  algorithm  featuring
specialized  operators  for  initialization,  crossover,  and  mutation
tailored  to  various  gene  types.  This  method  is  effective  in
providing  good  feasible  solutions  and  finding  optimal  solutions
when UAV resources  are  limited.  Jia  et  al.[34] researched the two-
stage collaborative multi-tasking problem with randomized speed
and time window, and proposed a meta-heuristic algorithm based
on  improved  genetic  algorithm.  The  simulation  results
demonstrate  that  this  algorithm  surpasses  other  randomized
search  algorithms  in  both  search  efficiency  and  convergence
speed. Considering the mission execution capability of UAVs and
the  probability  of  destruction  of  on-board  munitions,  Tian  and
Wang[45] established a task allocation optimization model based on
the mission execution time and the attack benefit.  Then they put
forward  a  genetic  algorithm  based  on  multiple  types  of  genetic
coding  to  avoid  the  phenomenon  of “deadlock”,  which  can
quickly  and  efficiently  solve  the  task  allocation  problem  under
multiple constraints. 

2.2    Particle swarm algorithm
The  particle  swarm  optimization  (PSO)  algorithm[46],  initially
introduced in 1995 by Kennedy and Eberhart[47], is a parallel meta-
heuristic algorithm that emulates the collective foraging behaviors
seen  in  birds,  fish,  and  various  organisms.  It  is  employed  to
address  optimization  challenges.  PSO  boasts  several  advantages,
including  rapid  convergence,  high-quality  solutions,  and

robustness  when  applied  to  multi-dimensional  spatial  function
optimization  and  dynamic  objective  optimization.  Therefore,  it
has  been  applied  in  many  fields,  such  as  multi-objective
optimization,  constrained  optimization,  signal  processing,  neural
network  training,  and  so  on.  The  advantages  of  particle  swarm
algorithms  in  heterogeneous  UAV  tasking  are  collaborative
search,  balancing  local  and  global  search,  and  adapting  to  high-
dimensional  optimization  and  constraints,  so  it  can  provide
efficient solutions to complex problems.

Wang et al.[1] utilized a multilayer coding strategy and a bound
scheduling method to handle logical and physical restraints. They
also  introduced  four  optimization  objectives  to  evaluate  task
allocation  schemes.  Subsequently,  they  present  the  improved
multi-objective  quantum  particle  swarm  optimization
(IMOQPSO)  algorithm,  which  takes  into  account  particle
convergence  and  distribution.  Additionally,  it  incorporates
adaptive parameter control and a hybrid update mechanism. The
method can  handle  the  constraints  more  finely  and  improve  the
solution quality. In order to deal with the constraints of specified
task  order,  time  window  and  UAV  heterogeneity,  Zhang  et  al.[48]

introduced  an  enhanced  quantum  particle  swarm  optimization
(QPSO) algorithm that relies on a code-and-repair approach. This
approach  establishes  a  clear  link  between  particle  positions  and
the  task  assignment  solution  and  it  can  solve  problems  more
efficiently  and  stably.  In  addition,  the  algorithm  can  be  used  to
solve  the  UAV  task  allocation  problem  in  complex  scenarios.  In
the work of Wang et al., they introduce introduce the knee point
based  co-evolution  multi-objective  particle  swarm  optimization
(KnCMPSO) algorithm[21].  This approach utilizes a hybrid coding
technique  that  relies  on  3D matrices,  along  with  an  initialization
method based on constraint processing. Additionally, it introduces
learning strategies for inflection points, binary crossover methods,
and local  search strategies  for  interval  perturbations,  all  aimed at
enhancing the algorithm’s convergence and diversity. Drawing on
coding  methods,  structural  reorganization  strategies,  and  co-
evolutionary  strategies  for  mission  allocation  and  path  planning,
Wang  et  al.[49] introduced  a  co-evolution  based  mixed-variable
multi-objective  particle  swarm  optimization  (C-MOPSO)
algorithm,  this  algorithm has  significant  performance  advantages
over other algorithms using co-evolutionary strategies in terms of
solution  convergence  and  set  diversity.  Furthermore,  they
established  a  model  for  UAV  cooperative  multi-task  allocation
known as the M-CMTAP model. 

2.3    Ant colony algorithm
The  ant  colony  algorithm  (ACO)  is  a  bio-inspired  optimization
algorithm initially introduced in the early 1990s by Colorni et al.[50]

It draws inspiration from the foraging behavior exhibited by ants.
The algorithm adopts distributed parallel computing mechanism,
which is robust and easy to be combined with other optimization
algorithms,  and  thus  receives  wide  attention.  At  first,  ACO  was
mainly applied to solve the traveler’s problem (TSP) and achieved
good  results.  As  the  algorithm  has  evolved,  researchers  have
devised  numerous  enhancement  strategies  to  elevate  its
performance. These improvements have expanded its applicability
to  diverse  domains  such  as  job  scheduling,  path  planning,  data
mining, and more. These efforts have yielded a wealth of research
outcomes  and  achievements[51, 52].  The  model  of  the  algorithm
originates from the simulation of real ants’ foraging behavior, and
guides  the  movement  of  individual  ants  through  the  release  and
perception  of  the  pheromone,  which  ultimately  realizes  the  ant
colony  searching  for  the  optimal  path  under  the  action  of  self-
organization.  The  advantages  of  ant  colony  algorithms  in
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heterogeneous  UAV  task  allocation  are  pheromone-guided
balanced  global  local  search,  adaptive  tuning  and  constraint
processing.  It  is  well-suited for  tackling large-scale  problems,  can
be parallelized effortlessly, and lends itself to efficient optimization
for task allocation.

To  enhance  the  model’s  realism,  Gao  et  al.[53] categorized  the
heterogeneous  objectives  into  point,  line  and  area  objectives.  By
grouping  and  arranging  the  characteristics  of  the  model,  they
develop  the  grouping  ant  colony  optimization  algorithm  and
incorporated  a  negative  feedback  mechanism  to  expedite
algorithm  convergence,  aiming  to  enhance  the  model’s  realism.
Simulation  results  demonstrate  the  algorithm’s  growing
advantage  as  the  scale  increases.  Numerous  studies  have  been
conducted  on  ACO  algorithms  in  the  context  of  UAV  task
allocation  problems[53–55].  However,  existing  theories  either
straightforwardly  represent  the  original  problem  as  a  single-
objective  optimization  issue  or  employ  weighted  sum techniques
to convert the multi-objective optimization problem into a single-
objective optimization problem. Chen et al.[56] introduced a multi-
objective ant colony optimization (MOACO) algorithm featuring
a  novel  pheromone  update  mechanism  and  four  newly  defined
heuristic  information parameters.Numerical  experiments  validate
the  algorithm’s  strengths,  including  faster  convergence,  higher
solution  quality,  and  increased  diversity  in  the  solutions  it
generates. 

2.4    Clustering algorithm
Categorizing similar physical objects together is one of the earliest
human  activities,  which  is  the  original  purpose  of  clustering.  In
1984, Blashfield and Aldenderfer[57] proposed four major functions
of  cluster  analysis:  extending  data  categorization,  exploring  the
concept  of  entity  categorization,  generating  hypotheses,  and
testing  categorization  hypotheses  based  on  real  data  sets.  Cluster
analysis has evolved alongside the progress in statistics, computer
science, and artificial intelligence, finding widespread applications
across  various  domains.  Clustering  algorithms  are  used  to
categorize  tasks  and  reveal  associations  and  differences  between
tasks,  which can satisfy  the correspondence between the number
of  mission  clusters  and  the  number  of  task-assigned  UAVs.  In
UAV  task  allocation,  distance  clustering  method  is  usually  used.
Clustering  algorithms  have  significant  advantages  in
heterogeneous  UAV  collaborative  task  allocation,  optimizing
resource  matching  through  similarity  analysis  and  task
classification,  reducing  problem  complexity,  and  adapting  to
dynamic environments in real time. The interpretability also gives
it credibility in practical applications.

To  appropriately  address  more  realistic  real-time  dynamic
scenarios,  Tang  et  al.[58] integrated  the  concept  of  fuzzy  C-means
clustering  into  an  ant  colony  optimization  algorithm  and
introduced  a  reassignment  strategy.  Simulation  results
demonstrate  that  the  proposed  algorithm  can  effectively  realize
dynamic reallocation of multiple UAV tasks in dynamic emergent
scenarios.  To  enhance  the  efficiency  of  task  allocation  in  large-
scale  UAV swarms,  Fu et  al.[59] segmented the  UAV swarms into
multiple  clusters  based  on  task  types,  distances  between  UAVs,
and  other  factors.  This  approach  effectively  transforms  a  large-
scale problem into several interrelated small-scale problems. They
also  introduced  a  two-layer  task  assignment  algorithm  based  on
feature-weighted clustering,  which proves to be advantageous for
addressing  large-scale  task  allocation  problems,  and  is  able  to
allocate tasks effectively and efficiently. 

2.5    Reinforcement learning algorithm
Reinforcement learning (RL) has seen extensive application across
various  domains  in  recent  years,  thanks  to  the  advancement  of
artificial  intelligence  technology[60, 61].  It  is  a  machine  learning
approach whose goal is to maximize cumulative rewards by agents
learning  to  take  actions  in  interaction  with  their  environment.  It
typically  uses  tables  (Q-tables)  or  function  approximation
methods  to  represent  policies  or  value  functions.  Deep  rein-
forcement learning (DRL) is a branch of Reinforcement Learning
that  introduces  deep  neural  networks  to  deal  with  high
dimensional  and  complex  state  spaces  to  better  solve  real-world
problems. DRL has demonstrated its powerful ability to learn and
optimize  decisions  in  several  domains,  such  as  problems  like
AlphaGo Zero[62] and Atari[63]. In addition, it is able to quickly find
the best solution in discrete decision spaces with the advantages of
speed  and  generalization,  so  it  has  a  significant  advantage  in
combinatorial  optimization  problems[64–67].  At  present,  a
considerable number of researchers are employing reinforcement
learning  methods  to  address  the  challenge  of  cooperative  task
allocation in UAV systems.

With  the  advantages  of  dealing  with  uncertain  environments
and real-time implementability, RL offers an efficient solution for
addressing  the  task  allocation  challenge  among  heterogeneous
UAVs, particularly in the presence of environmental uncertainty.
Zhao et  al.[68] formalized the task allocation problem as a  markov
decision process  (MDP) and introduced the  fast  task  assignment
(FTA)  algorithm,  which  relies  on  Q-learning,  neural  network
approximation,  and  prioritized  experience  replay,  which  is
efficient in computation, adaptive, and able to deal with the effects
of  environmental  uncertainty.  This  existing  task  allocation
methods  are  mainly  classified  as  centralized  and  distributed.
Centralized  methods  require  high  real-time  computation  and
communication  for  large-scale  UAV  systems,  while  distributed
methods  require  global  communication,  which  increases  the
burden of the system. In view of the limitations of past methods,
Liu  et  al.[69] proposed  a  cooperative  dynamic  task  allocation
algorithm  based  on  multi-intelligence  body  reinforcement
learning.  This  approach  achieves  rapid  response  and  resource
reallocation for heterogeneous UAV systems through the creation
of  a  coordination  network  and  a  Q-network.  Simultaneously,  it
mitigates the computational overhead and enhances the scalability
of the system. Yue et al.[70] proposed a hierarchical multi-intelligent
body  reinforcement  learning  approach  aimed  at  solving  the
cooperative  decision-making  problem  of  heterogeneous  UAV
swarms in large-scale, uncertain scenarios. The method introduces
hierarchical  reinforcement  learning  and  multi-intelligent  body
reinforcement learning algorithms, and utilizes neural networks to
automatically  extract  important  features  of  complex  high-
dimensional  combat  scenarios.  In  real-world  combat  environ-
ments,  combat  situations  are  usually  more  urgent,  so  it  is
important  to  make  optimal  decisions  in  the  most  limited  time.
Based  on  reinforcement  learning,  Zhu  and  Fang[71] proposed  an
improved  Q-learning  algorithm.  This  method  improves
exploration efficiency, increases the possibility of obtaining better
solutions,  and  avoids  falling  into  a  local  optimum  by  accepting
worse  actions  in  random  exploration  and  eliminating  the
probability  of  future  actions  that  consistently  produce  worse
returns. 

2.6    Other algorithms
Beyond  the  algorithms  mentioned  earlier,  there  exist  numerous
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other  methods  designed  to  address  the  challenge  of  task
assignment in heterogeneous UAV cooperative scenarios.

In  the  study  by  Wang  et  al.[72],  they  formulated  a  multi-UAV,
multi-mission planning model that includes time windows. They
also  enhanced  the  taboo  search  algorithm,  thus  improving  its
optimization  capabilities  and  increasing  the  likelihood  of
obtaining superior global  optimal  solutions.  Wang et  al.[73] used a
heuristic-based  hybrid  algorithm  to  give  mission  planning  for  a
fleet  of  fixed-wing  heterogeneous  UAVs  to  perform  different
missions  at  different  locations  in  different  time  windows,  and
numerical  experiments  show  that  the  algorithm  can  effectively
handle  large-scale  problems.  Chen  et  al.[74] tackled  the  task
assignment  problem  under  constraints  related  to  task  types  and
UAV  sensor  limitations.  They  formulated  the  problem  as  the
multiple  time window based durbin travelling  salesman problem
(MTWDTSP)  and  solved  it  using  a  modified  multi-objective
symbiotic  organism  search  (MOSOS)  algorithm.  The  algorithm
exhibit  improved  optimality  and  efficiency  in  generating
assignment results, enhancing the probability of converging to the
optimal  solution.  Luo  et  al.[75] presented  a  solution  to  maximize
completion time and minimize total task time by considering the
function  or  function  level  of  UAVs  and  time  constraints.  They
introduced a multi-swarm fruit fly optimization algorithm with a
two-strategy  switching  mechanism.  The  results  indicate  that  the
algorithm possesses enhanced global search capabilities and offers
improved  efficiency  and  stability.  Chen  et  al.[76] introduced  a
chaotic  wolf  pack  algorithm  based  on  an  enhanced  stochastic
fractal  search  (MSFS-CWPA)  to  address  the  task  assignment
problem,  considering  the  performance  characteristics  of  specific
payloads.  This  approach  exhibits  superior  convergence  accuracy
and robustness. Liu et al.[77] introduced the fruit picking technique
into  the  nearest  neighbor  method  with  the  shortest  neighbor
distance  as  the  index,  and  then  proposed  the  orchard  picking
algorithm (OPA) which can quickly give the optimal sequence of
missions.  Simulation  results  show  that  this  algorithm  is  flexible,
robust  and scalable.  Within the constraints  of  resources,  effective
task execution range, task avoidance and task priority, Fan et al.[78]

proposed a discrete adaptive search whale optimization algorithm.
As  this  algorithm  first  utilizes  an  obstacle  avoidance  distance
estimation method, then updates based on intersection points and
introduces  a  search  intensity  adaptive  mechanism,  so  it  can
effectively  solve  the  discrete  problem  while  reducing  the
computational  complexity.  For  the  complex  constraints  such  as
specified  task  sequences  and  time  windows,  Zhang  et  al.[79]

introduced  an  enhanced  simulated  annealing  particle  swarm
optimization  (SAPSO)  algorithm  and  establish  the  connection
between particle swarms and feasible task allocation schemes. Cui

et  al.[80] introduced  an  opposition-based  learning  parameter-
adjusting harmony search algorithm to address the task allocation
problem  while  taking  into  account  constraints  related  to
heterogeneous load and task cost.

In  summary,  with  the  increasing  complexity  of  application
environments  and  mission  requirements,  a  single  UAV  is  no
longer  able  to  meet  the  requirements  due  to  the  limitation  of
UAV size and capability.  Multiple heterogeneous UAVs working
together are getting more and more attention due to their higher
team  performance.  However,  rationally  coordinating  multiple
UAVs for multi-task allocation planning is critical. As the scale of
UAVs and objectives grows, along with an increase in constraints,
the  solution  space  exponentially  expands,  leading  to  a  rise  in
computational  complexity.  To  tackle  this  challenge,  intelligent
optimization algorithms have found extensive  application in task
allocation problems due  to  their  conceptual  simplicity,  enhanced
stability,  and  increased  efficiency. Table  2 presents  the
performance indicators such as robustness and convergence speed
of  UAV swarm tasking  algorithms and compares  the  algorithms
based on these indicators. 

3    Research Prospect
Advancements  in  technology  are  continually  elevating  the
significance of UAVs in both civil aviation and military domains.
UAVs  are  increasingly  capable  of  performing  diverse  tasks,
including  target  surveillance,  weather  monitoring,  and  more.
However,  as  the  number  and  complexity  of  tasks  increase,  the
limitations  of  a  single  UAV  become  obvious,  which  prompts
multi-UAV cooperative work to become a research hotspot. Multi-
UAV autonomous  control  encompasses  various  facets,  including
task  assignment,  path  planning,  and  formation  control.
Cooperative  task  assignment  stands  out  as  a  pivotal  factor  in
mission  success.  In  recent  years,  researchers  have  extensively
studied  multi-UAV cooperative  task  allocation,  and  the  field  has
been  receiving  increasing  attention,  which  not  only  brings
opportunities but also significant challenges.

There  are  several  challenges  to  collaborative  UAV  tasking.
Firstly,  the  heterogeneity  of  UAVs  is  a  major  challenge,  as
different  types  and  models  of  UAVs  have  different  flight
performance,  load  capacity  and  endurance.  This  heterogeneity
complicates  the  tasking  problem,  and  thus  requires  rational
tasking  to  maximize  the  use  of  the  characteristics  of  various
UAVs.

Secondly,  the  multi-mission  multi-target  problem  needs  to  be
solved.  Typically,  limited  UAV  resources  need  to  be  allocated
among  multiple  tasks,  which  may  have  different  priorities  and

 

Table 2    Performance comparison of common intelligent optimization algorithms.

Indicator
Performance

GA PSO AOC Clustering algorithm

Dynamism Moderate Strong Strong Strong

Robustness Strong Strong Strong Weak

Fault tolerance Strong Moderate Strong Moderate

Accuracy Moderate Moderate Moderate Moderate

Applicable scale Moderate Large Large Moderate

Convergence speed Fast Fast Fast Fast

Real-time Weak Weak Weak Fast

Reliability High Low High High
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objectives.  The  task  allocation  problem  needs  to  strike  a  balance
between  multiple  objectives,  such  as  maximizing  the  number  of
tasks  to  be  completed,  minimizing  the  total  cost,  or  maximizing
the  coverage.  In  addition,  the  large-scale  task  allocation  problem
involves  a  large  number  of  UAVs and tasks,  which increases  the
computational  complexity.  Meanwhile,  UAVs  are  subject  to
resource  constraints  during  flight,  such  as  fuel,  battery  life,  and
payload  capacity,  which  also  need  to  be  considered  in  task
allocation.

Thirdly,  the  task  allocation  must  also  satisfy  various  task
constraints,  including  time  window,  geographic  location,  and
other  constraints.  Simultaneously,  tasks  and  environmental
conditions  can  evolve  over  time,  necessitating  real-time
adjustments  in  task  allocation  to  adapt  to  these  changes.  Many
uncertainties such as weather, wind speed, and target location also
need to be taken into account to ensure that the task assignment
algorithms  are  able  to  adapt  as  well  as  adjust  to  uncertain
situations.

In  addition,  communication  and  cooperative  control,  privacy
and security issues are also two important challenges. The former
is  due  to  the  fact  that  effective  communication  and  cooperative
control  between  UAVs  may  be  affected  by  factors  such  as
communication  delays,  bandwidth  limitations,  data  loss,  and
collaborative  decision-making.  The  latter  is  because  tasking
involves  the  transmission  of  sensitive  information,  such  as  UAV
and  mission  location  information  and  sensor  data.  Ensuring  the
privacy  and  security  of  this  information  is  of  paramount
importance in the task allocation process.

Finally,  learning-based  algorithms  adjust  strategies  by  learning
from  experience,  analyzing  large  amounts  of  data  quickly  and
giving  tasking  decisions  efficiently,  which can meet  the  demands
of  dynamic  operational  environments,  continuously  optimize
mission  execution,  and  improve  the  accuracy  and  quality  of
mission  execution.  Such  algorithms,  especially  reinforcement
learning and deep learning methods, can coordinate the operation
of large-scale UAV swarms more efficiently and realize the scaled
execution  of  complex  tasks.  In  order  to  improve  the  autonomy,
efficiency  and  adaptability  of  UAV  swarms,  we  can  improve  the
robustness  and  fault  tolerance  of  the  algorithms,  the
interpretability of the decision-making process, and the security of
the  learning  model  in  the  further  research  to  address  the
increasingly complex application requirements. 

4    Conclusion
Heterogeneous  unmanned  aerial  vehicle  (UAV)  swarms  have
attracted  extensive  interest  from  the  domestic  and  international
research  communities  due  to  their  excellent  flexibility,  diverse
mission capabilities, and wide range of application prospects. The
objective of this paper is to delve into the challenge of cooperative
task  allocation  within  heterogeneous  UAV  swarms  and  explore
the  application  of  artificial  intelligence  in  addressing  this  issue.
The review introduces the wide application of artificial intelligence
algorithms  in  UAV  swarm  mission  planning  as  well  as  analyzes
the  advantages  and  disadvantages  of  these  algorithms  in  multi-
UAV  swarm  mission  planning.  By  delving  into  these  key
techniques  and  their  applications,  this  paper  indicates  future
research  directions  and  challenges.  The  review  highlights  the
extensive  utilization  of  artificial  intelligence  algorithms  in  UAV
swarm mission planning and provides an analysis of the strengths
and weaknesses of these algorithms in the context of multi-UAV
swarm mission planning.
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