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ABSTRACT: Polyoxometalates (POMs), renowned for their robust e
multielectron transfer capabilities, are utilized as photocatalysts. A Cu&POM
based complex comprising H;PMo0,,0,, (PMo,,) and 1,10-phenanthroline
has been structured into a supramolecular framework through hydrogen
bonding and t—1T interactions. This complex demonstrates exceptional
photocatalytic efficacy in the oxidation of toluene and the photodegradation
of metronidazole. The oxidation of toluene with Cu-PMo,, achieved a yield
and selectivity of 100% wunder low energy conditions, producing
unprecedented results and demonstrating outstanding stability in cycling
tests. Photodegradation of metronidazole using Cu-PMo,, achieved a
degradation rate of 0.178. This work could facilitate the design and synthesis
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of novel Cu&POM based complexes with superior photocatalytic activities.
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1 Introduction

Wastewater containing both inorganic and organic contaminants
poses significant environmental challenges, jeopardizing human
health due to their toxicity, persistence, and bioaccumulation [1, 2].
Consequently, the removal of pollutants has become a critical
research focus in the field of water treatment. Among various
methods, such as physical, chemical, and biological processes,
photocatalytic treatment stands out as one of the most effective and
promising techniques for eliminating organic contaminants [3, 4].
Notably, toluene, a common organic solvent, and metronidazole
(MT?Z), an antibiotic, have become prominent pollutants in recent
decades [5, 6].

Achieving the oxidation of toluene and photodegradation of
metronidazole presents an effective and appropriate method for
water treatment. The photocatalytic oxidation of toluene yields
commercially valuable products such as benzyl alcohol,
benzaldehyde, and benzoic acid, which are versatile intermediates
in the manufacture of preservatives, perfumes, dyes,
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pharmaceuticals, solvents, plasticizers, and flame retardants [7, 8].
Among these products, benzaldehyde is particularly desirable
because it can be easily converted into the corresponding carboxylic
acid [9]. Furthermore, the presence of MTZ in ground and surface
water is increasing, posing potential risks to human health and the
ecological environment [10]. Over the past decades, a highly
efficient and low-cost photocatalytic method has been utilized for
water treatment [11, 12]. Cu, an inexpensive, abundant, and redox-
active transition metal, has been explored in various Cu-based
complexes for applications such as water oxidation [13] and CO,
reduction [14]. The interest in developing the properties of Cu-
complexes has been growing [15]. Polyoxometalates (POMs), with
their tailored structural and semiconducting properties, have been
extensively applied as photocatalysts due to their unique ability to
continuously accept electrons or protons while maintaining
structural integrity and their powerful multielectron transfer
capability [16-23]. POMs are instrumental in various applications
including CO, photoreduction [24] and photocatalytic water
splitting [25, 26]. Notably, POMs exhibit a high-energy excited state
conducive to C-H activation [27, 28]. The helical microporous
nanorods (HMNRs), assembled from POM clusters [a-P,W 40¢,]"
and cationic surfactants, have been utilized as photocatalysts for the
oxidation of toluene [29]. Furthermore, numerous POM based
complexes have demonstrated potential for use in photocatalytic
degradation [30, 31]. For instance, two {As;W;} polyoxometalates
decorated with metal-phen complexes have shown outstanding
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photocatalytic activity for the degradation of three dyes (methyl
blue (MB), Rhodamine B (RhB), and methyl orange (MO)) [32].

Our research utilized a Cu&POM based complex [Cu,(phen),
(HPO,),(H,0),(OH),]-[HPMo0,,0,]-H,O  (abb. = Cu-PMo,,)
(CCDC: 666620) as a bifunctional photocatalyst for the oxidation of
toluene and the photodegradation of metronidazole. The use of Cu-
PMo,, for toluene oxidation achieved high yields and selectivity
(100%) for benzaldehyde under conditions of low energy
consumption—An unprecedented result with exceptional stability
maintained during the cycle test. Moreover, Cu-PMo,, was applied
to the photodegradation of metronidazole, exhibiting a degradation
rate of 0.178. These results indicate that the Cu&POM based
complex could be effectively applied as a photocatalyst for organic
reactions.

2 Materials and methods

2.1 Materials and physical measurements

All reagents were obtained commercially and utilized as received.
Elemental analyses (C, H, and N) were carried out using a Perkin-
Elmer 2400 CHN Elemental Analyzer. Gas chromatography (GC)
analyses were conducted on a SHIMADZU Gas Chromatograph
(GC-2014C) equipped with an auto injector (AOC-20i). UV-visible
(UV-Vis) measurements were performed using a TU-1901 Double-
beam UV-visible spectrophotometer. The light source for
metronidazole degradation was an LED power supply at 400 nm
(model: XC-36W900-HTP), while the oxidation of toluene was
facilitated by a multichannel photocatalytic reactor (10 W, model:
PCX-50C Discover).

2.2 Photocatalytic oxidation of toluene

In a typical experimental setup, 3 mL of toluene and 7 mL of
acetonitrile were combined with varying amounts of Cu-PMoy, (10,
15, and 20 mg) in a 20 mL photocatalytic vial. The mixture was
sparged with oxygen for 10 min to maintain an atmosphere of 1
atm of O, under sealed conditions. The reaction was stirred at
room temperature and subjected to irradiation with light of specific
wavelengths (365, 420, or 450 nm) for durations ranging from 3 to
24 h. Subsequently, the reaction solution was analyzed by gas
chromatography to determine the conversion of toluene and the
selectivity for benzaldehyde.

For stability tests, the catalyst was precipitated, washed with
water and ethanol, and dried at room temperature. This procedure
was repeated six times, with each cycle lasting 6 h.

2.3 Photodegradation of metronidazole

The test concentration for metronidazole was set at 100 mg/L. The
solution of metronidazole was combined with 10 mL of Cu-PMo,,
(10 mg) and sonicated for 5 min to ensure uniformity. The mixture
then underwent an adsorption—desorption equilibration for 50 min
in a dark environment. Following this, degradation was initiated
using a 400 nm visible light lamp. Throughout the degradation
process, samples were periodically withdrawn and replaced with an
equivalent volume of water to maintain consistent dilution. After
centrifugal separation, the samples were analyzed using UV-Vis
diffuse reflectance spectroscopy (DRS) in the 200-600 nm range.
The degradation efficiency was quantified by C/C, (C represents the
concentration at a specific time, while C; denotes the initial
concentration).
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3 Results and discussion

3.1 Structure and morphological characterization

To elucidate the structure of the Cu&POM based complex, we
employed a series of characterization techniques. Initially, the
structural representation of Cu-PMo,, is depicted in Fig. 1(a),
highlighting the assembly of Cu*, 1,10-phenanthroline, and PMo,
units. Fourier transform infrared spectrum of Cu-PMo,,,
performed using a KBr pellet, revealed the spectral range from 500
to 4,000 cm™ for Cu-PMo,,. As illustrated in Fig. 1(b), the PMoy,
unit displayed four characteristic peaks: 1,058 cm™ for P-O,
(central PO, tetrahedron oxygen atoms), 970 cm™ for Mo=04
(terminal oxygen atoms), 876 cm™ for Mo—Ob-Mo (corner-shared
oxygen atoms), and 813 cm™ for Mo-O~Mo (edge shared oxygen
atoms) [15, 33]. Additional peaks between 1,000 and 1,748 cm™
correspond to vibrations of the aromatic ring in 1,10-
phenanthroline [34], and a peak at 3,172 cm™ is attributed to C-H
vibrations in 1,10-phenanthroline [35]. Notably, the infrared
spectra of Cu-PMo,, remained consistent postreaction, affirming
the photocatalyst’s remarkable stability (Fig. S1 in the Electronic
Supplementary Material (ESM)).

High-resolution optical microscopy allowed for the examination
of Cu-PMoy,’s microcrystal Cu-PMo morphology, revealing
uniformly sized microcrystals (approx. 100 um), as shown in Fig.
1(c). Energy-dispersive spectroscopy (EDS) of Cu-PMo, confirmed
the presence of Cu, P, and Mo, further substantiating the successful
synthesis of the Cu&POM based complex Cu-PMo,, (Fig. 1(d)).

Thermogravimetric analysis (TGA) of Cu-PMo,, indicated two
distinct phases of weight loss (Fig. S3 in the ESM). The initial phase
occurred between room temperature and 200 °C, attributed to the
release of coordinated and free water molecules. A significant
reduction in mass was observed between 400 and 800 °C,
corresponding to the decomposition of phosphomolybdic acid and
organic ligands [36].

Moreover, the oxidation states of the elements Cu-PMo;, within
Cu-PMo,, were characterized using X-ray photoelectron
spectroscopy (XPS). The spectra Cu-PMo, revealed Cu (2p), Mo
(3d), P (2p), C (1s), N (1s), and O (1s) compositions (Fig. 2 and Fig.
S2 in the ESM). Specifically, the Cu 2p spectrum (Fig. 2(a)) featured
the main Cu 2ps, peak and its satellite at 934.7 and 942.9 eV,
respectively, and the main Cu 2p,;, peak with its satellite at 954.3
and 962.3 eV. Additionally, two signals at 232.6 and 235.7 eV for
Mo* (Fig. 2(b)), representative of Mo 3ds, and Mo 3ds;,, were
observed [37]. The P 2p XPS spectrum of Cu-PMoy, (Fig. 2(c))
showed a binding energy of 133.7 eV, indicative of P-O bonds. The
C 1s spectrum was deconvoluted into two peaks, representing C=C
at a binding energy of 284.5 eV [38] and C-N at 285.3 eV [39].
Collectively, the XPS data of Cu-PMo,, not only confirm the
structure of Cu-PMo,, but also demonstrate the high oxidation
states of Cu and Mo, essential for the oxidation-reduction reactions
involved.

The Cu&POM based complex, as a type of Cu-based complex,
exhibits  photocatalytic ~ activity ~toward oxidation and
photodegradation. The solid state UV-vis DRS spectrum of Cu-
PMo,,, displayed in Fig. 3(a), shows two distinct absorption peaks.
The peak at 306 nm primarily results from the charge transfer
transition 7>m* within the fundamental structure of
phenanthroline [34]. A plot of (ahv),, versus hv was used to
determine the band gap of Cu-PMo,,, which was found to be
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Figure1 (a) The structure, (b) IR spectrum, (c) high-resolution optical microscope image and (d) the corresponding EDS mapping of of Cu-PMo,.
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Figure2 (a) Cu2p, (b) Mo 3d, (c) P 2p, and (d) C 1s of high-resolution XPS spectra of Cu-PMo,.

249 eV (E, = 249 eV), indicating that Cu-PMo,, possesses a
suitable band gap for semiconductor applications [40].
Furthermore, Mott-Schottky plot with positive slopes confirm that
the synthesized material is a typical n-type semiconductor
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(Fig. 3(b)). The flat band potential of Cu-PMo,, relative to the
Ag/AgCl electrode is —0.56 V, equating to —0.36 V versus the
normal hydrogen electrode (NHE) [41]. Thus, the valence band
(EVB) of Cu-PMoy, is calculated at 2.13 V (Eyp = E, + Ecp) [42].
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Figure3 (a) The solid-state UV-vis DRS spectrum and (b) the Mott-Schottky plot of Cu-PMo,.

The Eyg and E, values Cu-PMo,, demonstrate that Cu-PMoy, is
well-suited for photocatalytic applications.

3.2 Photocatalytic oxidation of toluene

Efficient production of the desired product during the
photocatalytic oxidation of toluene presents numerous challenges.
Inspired by the photocatalytic activity of Cu-PMo,,, we oxidized
toluene under an oxygen atmosphere, at ambient temperature, and
with radiation from a xenon lamp. A series of experiments
determined the optimal conditions for this reaction, as detailed in
Table 1. The best catalytic effect was observed using 10 mg of Cu-
PMo,, under a 365 nm light source. Optimal control of the reaction
time to 4 h achieved 100% selectivity for benzaldehyde, representing
a significant improvement over previous studies [29, 43, 44]
(Fig. 4(b)). Notably, no benzoic acid formation was observed when
the reaction time was less than 8 h, allowing selective production of
benzaldehyde. The selectivity for benzaldehyde reached 15.91
mmol/g at 10 h, superior to the 2.83 mmol/g at 8 h. This increase is
attributed to the onset of benzoic acid formation after 8 h. The
conversion of toluene gradually increased with the reaction time,
reaching 58.7 mmol/g at 24 h, surpassing previous results for
photocatalytic toluene oxidation (Fig. 4(c)).

Additionally, Cu-PMo, was utilized to oxidize substituted C-H
bonds on other aromatic rings [45]. The conversions of p-

2.0
o Cu-PMo,,
1.6
1.2 ¢
0.8
041 056V
0.04+— T T T T T
-06 -04 -02 00 02 04 06

Potential (V vs. Ag/AgCl)

nitrotoluene,  p-bromotoluene,  p-xylene, and  homo-

trimethylbenzene at 6 h were 10.64, 164.0, 9.1, and 28.56 mmol/g,
respectively. Oxidation of alkyl side chains and hydrocarbon double
bonds (C=H) on the benzene ring was also effective; for instance,
the oxidation of p-bromoethylbenzene and styrene reached
conversions of 361 and 30.66 mmol/g, respectively (Table S1 in the
ESM).

Cycle testing was conducted to further evaluate the durability of
Cu-PMo,,. After a 6 h reaction, the catalysts underwent five
additional cycles of testing and recycling, using centrifugation.
Throughout these cycles, there was no significant decrease in either
the conversion rate or the selectivity toward benzaldehyde

(Fig. 4(d)).

3.3 Photodegradation of metronidazole

Cu-PMo,, was utilized as a catalyst for the photodegradation of the
antibiotic metronidazole in aqueous solution under illumination
from a 400 nm visible light lamp. Figure S4 in the ESM illustrates
the absorbance results of the metronidazole solution under various
conditions. After introducing the catalyst to the solution and
allowing it to react for 150 min, as shown in Fig. 5, C/C, decreased
to 0.26. Subsequently, upon the addition of a sodium chloride
solution (35.5 mg of NaCl added achieving a concentration of 0.1
mol/L), the C/C, value further decreased to 0.178, maintaining the

Table 1 Conversion rate of toluene and selectivity of benzaldehyde under different conditions

Reaction conditions

Total yield (mmol/g)* Benzaldehyde (mmol/g)® Benzaldehyde selectivity

Catalyst type ~ Catalyst weight (mg) Light wavelength (nm) Reation time (h)
Cu-PMoy, 10 365 3 0.92 0.92 100%
CuSO,-5H,0 10 365 3 0.105 0.105 100%
H;PO,12MoO; 10 365 3 7.83 6.6 84.30%
Cu-PMo, 10 365 10 22.89 15.91 69.50%
Cu-PMo,," 10 365 10 16.4 5.99 36.50%
Cu-PMo,, 10 365 4 1.21 1.21 100%
Cu-PMo,, 10 420 4 1.03 1.03 100%
Cu-PMo,, 10 450 4 0.85 0.85 100%
Cu-PMo, 10 365 4 1.21 1.21 100%
Cu-PMoy, 15 365 4 1.95 1.505 77.20%
Cu-PMo,, 20 365 4 2.76 2.41 87.30%

“The yield was obtained by GC; *without any solvent, the substrate was applied as the solvent.
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Figure5 Effect of the catalyst on the degradation of metronidazole under
different conditions under visible light.

initial metronidazole concentration at 100 mg/L. This data
demonstrates that the photodegradation of metronidazole under
visible light is enhanced by the addition of NaCl, likely due to an
increase in the ionic strength from chloride ions, which accelerates
the catalytic decomposition of metronidazole [46]. The negligible
degradation observed without Cu-PMo,, underscores the
indispensability of the catalyst.

Further experimentation revealed that varying the pH of the
solution containing metronidazole influenced the degradation
outcomes significantly. As the reaction time neared 150 min, C/C,
values of 0.2, 0.22, 0.25, and 0.45 were recorded at pH levels of 3, 5,
7, and 9, respectively. These results indicate that acidic conditions
are more conducive to the degradation of metronidazole in aqueous
solutions, as evidenced by substantially lower C/C, values compared
to neutral and alkaline conditions. Changes in pH likely affect the
electrochemical properties of both metronidazole and the catalyst,
which could explain the observed differences. The electrostatic
interactions between the complex and metronidazole, resulting
from the liberation of charge in the solution, contribute to the
variability in degradation efficacy across different pH values [47].

Based on the research findings, we propose the possible
degradation mechanisms of Cu-PMo,, as illustrated in Fig. 6. POM
based compounds and semiconductor materials exhibit similar

(& 727w | Sci@pen
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Figure 6 Photocatalytic degradation mechanism of MTZ over Cu-PMo,,.
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photocatalytic properties [48, 49]. Notably, the valence and
conduction bands of semiconductors correlate with the highest
occupied molecular orbital (HOMO) and lowest unoccupied
molecular orbital (LUMO) energy levels in POM compounds [50,
51]. Initially, metronidazole is absorbed onto the surface of Cu-
PMoy, in the dark, facilitated by the appropriate band gap (E, =
249 eV). Under visible light, electrons may transfer from O* to
Mo* via Mo-O-Mo bonds, generating a highly oxidized excited
state. This state efficiently transfers energy to molecular oxygen
(O,), forming singlet oxygen (*O,). The process also produces a
hole-electron pair (hole at O-and electron at Mos"), similar to those
in semiconducting metal oxides. The conduction band potential of
Cu-PMoy, (Ecg = —0.36 V) is lower than the potential of O,/-O*
(033 V vs. NHE), facilitating the production of superoxide
radicals (-O*) through the reduction of dissolved O, by
photogenerated electrons [52, 53]. Additionally, the valence band
potential of Cu-PMo,, (Eyg = 2.13 V) exceeds that of OH/-OH
(1.89 V vs. NHE), enabling the photogenerated holes to oxidize
hydroxide ions (OH") on the material’s surface to hydroxyl radicals
(‘OH). These reactive oxygen species further decompose
metronidazole into low-toxicity intermediates, and ultimately into
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carbon dioxide and water. The specific intermediate products have
not yet been identified, necessitating further investigation to
elucidate the exact photocatalytic mechanism.

4 Conclusions

In summary, we have synthesized a Cu&POM based complex
incorporating PMo,;, and 1,10-phenanthroline. This complex
exhibits outstanding photocatalytic performance, particularly in
toluene oxidation tests where it achieved 100% selectivity for
benzaldehyde within 4 h, without producing benzoic acid for up to
8 h. After 24 h, it reached a conversion rate of 58.7 mmol/g, an
unprecedented result that was consistently maintained even after six
cycles. The complex also proved effective in catalyzing the
photodegradation of metronidazole, achieving a degradation rate of
0.178 with minimal energy consumption. These achievements
highlight the potential of Cu&POM based complexes in enhancing
photocatalytic properties for applications in chemical engineering
and water treatment. Future studies could expand on this research
by exploring the oxidation of additional aromatic hydrocarbons
and the degradation of other antibiotics, thereby broadening the
applicability of such complexes in environmental management and
sustainable chemical processes.

Electronic Supplementary Material: Supplementary material
(synthesis method, FT-IR, XPS spectra, TGA curves and so on) is
available in the online version of this article at
https://doi.org/10.26599/POM.2024.9140067.
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