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ABSTRACT: In recent years, polyoxometalates
(POMs) have been extensively researched for
their potential in treating diabetes, tumors, cancer,
inflammation, and other diseases, both in vitro and
in vivo. Their primary therapeutic mechanisms are
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related to the generation of reactive oxygen
species (ROS), leading to oxidative stress.
Because mitochondria are the main site of ROS
production, POM treatment mechanisms may be
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associated with mitochondrial biosynthesis. This
study explores one of the mechanisms by which
POMs impact diabetes mellitus, focusing on the
increase in ROS and the resulting oxidative stress.
Additionally, POMs have been preliminarily studied
for their antioxidant and antitumor properties in the
treatment of diabetes mellitus and tumors. The
antioxidant and antitumor properties of POMs are
promising for future therapeutic drugs. By
examining oxidative stress and its impact on
various biomolecules, POMs have been
recognized as a drug therapy mechanism closely
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linked to mitochondria. Investigating the relationship between POMs and mitochondrial biosynthesis, as well as their impact on
mitochondria, provides a basis for future in-depth studies on the role of POMs in treating tumors, diabetes, and other

diseases.
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1 Introduction

Polyoxometalates (POMs), also known as poly acids, are a class of
nanoscale inorganic metal-oxygen cluster complexes. They are
formed from the highly oxidized states of transition metals such as
V, Mo, and W combined with oxygen [1]. The metal ions in POMs
can be partially replaced by other transition metals to create
substituted heteropolyacid compounds or the constituent elements
can be intentionally chosen to modify their physical and chemical
properties. Currently, POM-functionalized materials are attracting
attention for their promising applications in photovoltaic materials
[2, 3], energy materials [4], catalysis [5, 6], electrochemistry [7, 8],
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enzyme inhibition [9, 10], anticancer [11], antimicrobials [12],
treatment of Alzheimer's disease [13, 14], and antidiabetes.

Diabetes, tumors, and cancers are becoming global epidemics
owing to changes in lifestyle and diet. Diabetes encompasses type 1
diabetes (T1D) and type 2 diabetes (T2D). T1D is characterized by
genetic predisposition and environmental factors that trigger
autoimmunity, resulting in the destruction of insulin-producing f-
cells [15]. Balici et al. [16] synthesized two W-containing POMs
(POM1 and POM2) to act on a diabetic rat model. Results showed
that both POMs had a hypoglycemic effect on the diseased rats, as
evidenced by monitoring blood glucose levels, observing the
ultrastructure of P-cells, and recording the size of the secretory
vesicles. POMI exhibited a considerably more pronounced effect
than POM2. The hypoglycemic effect of both POMs was attributed
to the prevention of pancreatic -cell apoptosis and the promotion
of insulin synthesis. One of the causes of T2D is hyperglycemia and
insulin resistance resulting from oxidative stress. This condition,
often referred to as a metabolic disorder owing to mitochondrial
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dysfunction, occurs because mitochondria are the primary site of
ROS production during oxidative stress. T2D accounts for 95% of
all diabetes cases [17]. Chen et al. [18] reported that lipid-modified
polyoxovanadates (ULPOVs) exhibited the ability to inhibit obesity-
induced insulin resistance and lower glucose levels in a diet-induced
obesity model, thus helping to maintain glucose homeostasis. Given
our focus on type II diabetes, it is crucial to develop effective
diabetes therapeutics and to identify the targets and molecular
mechanisms of action of hypoglycemic agents.

Since the 1980s, studies on the antidiabetic properties of POMs
have evolved from their role as insulin analogs to their current use
as a-glucosidase inhibitors for blood glucose lowering and
antidiabetic effects. These studies have enhanced the understanding
of POMs as multifunctional therapeutic agents in type 2 diabetes
mellitus (T2DM) and have created opportunities to design and
screen POMSs with reduced cytotoxicity and improved bioactivity.
This can lead to the development of new therapeutic medications
for diabetes. Diabetes mellitus (DM), a chronic multifactorial
metabolic disease, is characterized by disrupted glucose
homeostasis. One of the main carbohydrate hydrolases, a-
glucosidase, inhibits glucose synthesis, making it an effective
therapy and prevention strategy for diabetes [19]. It has been shown
that in skeletal muscle, mitochondrial dysfunction—characterized
by altered function, reduced adenosine triphosphate (ATP)
synthesis, and increased ROS production—is a contributing factor
to insulin resistance and the development of obesity and diabetes
[20].

When considering illness, people often think of cancer and
tumor development owing to their complex mechanisms, which
has led many scholars to compete in researching these causes. One
contributing factor is oxidative stress, which causes cellular
dysfunction and is the basis of cancer and tumor formation. The
role of POMs in this context, particularly as a therapeutic approach,
remains underexplored. In this study, we discuss POMs in relation
to antidiabetic mechanisms and extend the discussion to their
mitochondrial regulatory mechanisms in the context of antitumor
activity.

2 POMs and antidiabetic mechanisms

21 Mechanism of Na‘/K-ATPase
inhibition by antidiabetic drugs

and Ca*-ATPase

Mitochondrial ATP is crucial as the cell's energy source and a major
source of reactive oxygen species (ROS). In all higher eukaryotes, a
transmembrane protein complex known as the Na?/K™-ATPase
(sodium-potassium pump) plays a crucial role. This energy-
consuming pump maintains the cell's ionic and osmotic balance.
The Na*/K'-ATPase enzyme facilitates ATP breakdown to provide
energy, maintains membrane potential, regulates cellular
osmolarity, and supports impulse conduction in nerve and muscle
cells. Additionally, it drives the transport of Na* and K* across the
cell membrane in opposite directions. In addition to regulating
osmotic pressure and supplying energy through ATP hydrolysis,
Na'/K*-ATPase also facilitates the transport of Na™ and K* across
the membrane in opposite directions, maintains membrane
potential, and promotes nutrient uptake. It is crucial for impulse
conduction in nerve and muscle cells. Ca*-ATPase, another
important enzyme, greatly influences heart and muscle contraction,
nerve cell action potential conduction, and cell secretion and
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proliferation by stabilizing intracellular Ca* concentrations.
Inhibitors of these enzymes are used to treat various conditions,
including diabetes and heart failure. Bosnjakovi¢-Pavlovi¢ et al. [21]
investigated the effect of 12-tungstophosphate on the conversion of
ATP to adenosine diphosphate (ADP) by Na'/K'-ATPase. The
results demonstrated that 12-tungstophosphate negatively affected
Na'/K*-ATPase enzyme activity. Gumerova et al. [22] compared the
effects of nine different heterotungstates on the induction of two P-
type ATPases. Their study revealed that large heteropolytungstates
Ko(C,HgN)s[H,,Se;W,60,45] (Se;W,)  and  Dawson-type
heteropolytungstates  Kg[a-P,WOg,] (P,Wg) exhibited the
strongest inhibitory effects on the enzyme. Fraqueza et al. [23, 24]
further extended the application of POMs as effective inhibitors of
Na*/K-ATPase and Ca*-ATPase by investigating Keggin-type
Css¢H;,PV,04, (PVy,), decavanadate (V,j), and monovanadate
(V). The results indicated that PV, exhibited stronger inhibition of
both Na'/K"-ATPase and Ca*-ATPase compared to V;, and V.
Additionally, PV,, demonstrated considerable potential as an in
vivo suppressor of Na'/K'-ATPase, particularly in relation to
chloride secretion.

2.2 Mechanisms of oxidative stress in antidiabetic drugs
with POMs

Liao et al. [15] selected biologically favorable gelatin methacrylate
(GelMA) hydrogel combined with molybdenum-based POMs
nanoclusters (GelMA/POM) for an ex vivo therapeutic study on
bone damage in diabetic patients caused by excessive ROS
production. In vitro studies revealed that GelMA/POM inhibited
ROS production and reduced cellular oxidative stress. In diabetes,
reduced electron carriers from the tricarboxylic acid cycle, which
primarily produce glucose, disrupt redox balance and lead to
metabolic disorders. This results in the accumulation of reactive
oxygen and nitrogen radicals over time, causing considerable
oxidative stress [25]. The role of diabetes is shown in Fig. 1.
Mechanisms that contribute to diabetes, such as the polyol pathway
and the formation of advanced glycation end products (AGEs), can
also produce ROS. These pathways interact to exacerbate oxidative
stress [26]. Protein kinase C (PKC)-dependent activation of
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
can stimulate ROS/RNS (RNS = reactive nitrogen species)
production via elevated glucose levels [27]. Numerous studies have
indicated that oxidative stress contributes to the pathophysiology of
T2D. Recent findings suggest that the mechanism of many
antidiabetic drugs is linked to their antioxidant properties. For
example, metformin, a medication used to treat T2D, reduces the
generation of ROS and exhibits antioxidant effects [28].
Understanding the relationship between diabetes and antioxidants
reinforces the theoretical basis for using POM antioxidants as a
therapeutic strategy for diabetes. Recent studies have explored the
potential of POMs’ antioxidant properties as therapeutic agents for
diabetes.

3 T2D, tumor therapeutic agents and intrinsic
antioxidant mechanisms, antitumor mechanisms

In diabetes, uncoupling of oxidative phosphorylation leads to
inefficient ATP synthesis and the production of superoxide anions.
Therefore, a potential treatment approach is to mitigate the damage
caused by oxidative stress [29]. In 2012, Bagul et al. showed that
resveratrol, by reducing the excessive ROS emission from the
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Figure1 Mechanisms of action in the development of diabetes.

succinate cycle, was able to correct insulin resistance in diabetic
mice induced by oxidative stress [30]. Resveratrol from grapes has
potent antioxidant qualities that reduce insulin resistance and
activate SIRT1, a gene that protects cells from oxidative stress and
inflammation [31]. It also stimulates peroxisome proliferator
activated receptor y coactivator-la (PGC-la), which promotes
mitochondrial biogenesis and glucose uptake [32-35]. Van der
Schaft and colleagues reported in a large epidemiological study that
a diet rich in antioxidants was associated with improved insulin
sensitivity in patients with T2DM [36]. In 2015, Agil et al
demonstrated that melatonin enhances its antioxidant properties by
preserving mitochondrial function, which in turn improves insulin
resistance in diabetic mice [37]. This evidence suggested that some
antioxidants could reduce oxidative stress-induced insulin
resistance and maintain glucose homeostasis [38]. Mitochondria-
targeted antioxidants, such as SS-31, have been shown to inhibit
enzyme activity and cytokine expression by modulating
mitochondrial membrane potential (AY,) and ATP levels.
Additionally, they stimulate p38 protein kinase (p38 MAPK) and
NADPH oxidase activities in hyperglycemic conditions and
upregulate the expression of thioredoxin 2 (TRX2), demonstrating
promising therapeutic effects for diabetic nephropathy [39].
Therefore, designing mitochondria-targeted antioxidants offers a
more precise and effective strategy for developing drugs to treat
diabetes mellitus.

Because one of the mechanisms of diabetes treatment drugs
involves suppressing oxidative stress in the body, and tumor
development may also be related to oxidative stress, it is plausible
that patients with diabetes might be at an increased risk of
developing tumors. Sharma et al. [40] determined that diabetic
patients were at a higher risk of developing tumors, cancers, and
other diseases compared to non-diabetic individuals. This was
determined by analyzing the depth of invasion, tumor cross-
sections, and other diagnostic studies through pathology, imaging,
and research reports. It is suggested that the carcinogenic
mechanisms in diabetic patients may be linked to hyperglycemia,
cell proliferation, inflammatory cytokines, and other factors. The
study more directly demonstrates that oxidative stress plays a
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considerable role in the interactions between cancer, tumors, and
diabetes, including gene expression and signaling [41]. For instance,
oxidative stress further reduces ATP synthesis levels through the
pentose phosphate pathway, a key pathway for energy production.
This pathway generates NADPH, which is crucial for insulin
secretion, but also promotes tumor growth. Genetic factors
regulated by NADPH are essential for malignant tumor
development. High levels of ROS can contribute to carcinogenesis
by damaging DNA, proteins, and lipids, inducing genomic
instability, and activating factors such as NF-kB and apoptotic
protein kinases. Additionally, elevated ROS levels may also
contribute to the development of T2DM [42].

Furthermore, cellular and preclinical studies have demonstrated
that metformin, the preferred drug for treating T2D [43], also
possesses antitumor effects [44]. These effects are achieved through
the inhibition of mitochondrial oxidative phosphorylation. It has
also been demonstrated [45] that metformin's ability to restrict
tumor growth in vivo relies on its interaction with mitochondrial
complex I while also reducing insulin levels [46], which has also
encouraged the development of an economically licensed drug for
the treatment of cancer and diabetes [47].

4 POMs
mechanisms

and mitochondrial

regulatory

Mitochondrial dysfunction—an adverse effect of T2D characterized
by high production of ROS, reduced ATP levels, impaired
regulation of mitochondrial proteins, and various other responses
[48] —extends to mechanisms of tumorigenesis. Research shows
that mitochondrial synthesis and enzymes on the cellular
membrane are closely linked to changes in ROS levels. A major
source of mitochondrial ROS is the electron transport chain.
Damage to this chain, resulting from mitochondrial metabolic
disorders, leads to persistent opening of the permeability transition
pore in the mitochondrial membrane, reduced mitochondrial
membrane potential, increased Ca* accumulation, elevated ROS
levels, impaired redox balance, limited ATP synthesis, and a
detrimental impact on mitochondrial function [49]. When
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mitochondrial activity is impaired, apoptotic factors such as
cytochrome C and associated proteases, including caspases, are
released. This disruption can lead to gene mutations and trigger
apoptosis [50]. Excessive amounts of ROS can damage proteins,
lipids, and DNA, leading to severe oxidative stress and contributing
to conditions such as degenerative diseases and cancer.
Mitochondrial DNA (mtDNA) is especially vulnerable to ROS-
induced damage owing to its lack of repair mechanisms and
histones [51]. Meanwhile, studies have found that in cancer cells,
there is a state of persistent oxidative stress caused by mitochondrial
dysfunction and metabolic changes [29]. The role of mitochondria
is illustrated in Fig. 2. Excessive ROS, mitochondrial dysfunction,
and the stimulation of cancer cell proliferation are linked to gene
mutations, genetic abnormalities, and additional damage to
proteins and lipids. These factors collectively contribute to tumor
and cancer development [52]. Numerous studies have shown that
the intrinsic mechanisms underlying diabetes, tumors, and cancer
are closely linked to mitochondrial regulatory mechanisms. In this
study, we explore how POMs interact with mitochondrial
regulatory mechanisms in three distinct ways: (1) by affecting
mitochondrial oxidative stress and ROS production, (2) by
influencing mitochondrial ATP synthesis and the electron transport
chain, and (3) by modulating mitochondrial protein kinases and
gene expression processes that regulate mitochondrial function [53]
(see Table 1 for a summary).

41 POMs and mitochondrial oxidative stress ROS
generation

Hyperglycemia triggers the production of superoxide, and insulin
can also induce the formation of ROS [54]. The rise in ROS and
oxidative stress occur mainly in mitochondria [17]. Several
experimental studies have found that elevated glucose levels in
diabetic patients lead to excessive production of ROS. This excess
ROS results in mitochondrial metabolic disorders and tissue
damage characterized by oxidative stress injury [15]. Raza et al. [55]
observed a considerable increase in ROS in both the brain and liver
of ZDF mice, suggesting that oxidative stress is linked to
mitochondrial dysfunction in these mice. Additionally, a related
historical study indicated that high ROS levels are associated with

Q
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tumorigenesis [56]. Tungsten-based POM nanodots [57], novel
POMs synthesized using W atoms, have attracted considerable
attention from many scholars. Song et al. [58] designed giant
tungsten-oxonate cluster fragments coligated with Ce*™ and Ag’
linkers, specifically {[Ce pAgs(DMEA)(H,0),,W,,05][B-a-
TeWoOs;3]0},* (Ang-Te-Ag-CeNPs). They found that this POM
inhibited glioma cell growth by up to 74.8% and exhibited s
trong antitumor properties. The article highlighted that the
antitumor activity was due to the activation of ROS production
through the Ag active site, which induced oxidative imbalance
and cellular death. Additionally, the team performed related
research on the biological functions of large POM superclusters and
synthesized {[(Sn(CHs),),014{[CeW;0,5][TeW,0,¢][CeSn(CHS,),],
[TeWOs],},}*, which is the first report of an organotin/lanthanide
functional group with antitumor activity [59]. Ledn et al. [60]
investigated the effects of copper heteropolytungstate on
mitochondrial oxidative stress by synthesizing it as an antitumor
compound. They found that when PW,Cu was applied to toxic
cells, it induced oxidative stress, increased ROS levels, and
decreased GSH production in the mitochondria. This demonstrated
that the compound impaired mitochondrial metabolism and
cellular function, contributing to its antitumor effects. Additionally,
diabetes can lead to acute kidney injury (AKI) owing to damage to
renal tubules and disturbances in the mitochondrial electron chain,
resulting in excessive production of ROS. Huang's team designed
small tungsten-based nanodots (TWNDs), noting that W-atoms
exhibit extremely high antioxidant activity. These TWNDs were
shown to effectively reduce O,, H,O,, and other ROS. The study
also found that TWNDs had a mitochondria-targeting effect,
capable of restoring mitochondrial membrane potential, reducing
damage to the mitochondrial respiratory chain, and effectively
treating AKI [61]. Jia et al. [62] synthesized a novel compound
(Hdmap);[{CoNa,(H,0)s(BiWO3)H{BiWO50}]-2H,0 containing a
stabilized sandwich structure of {BiWg}. The researchers were
concerned with the close correlation between POMs and ROS
production. They found that {BiW,} reduced GSH levels in both
cellular and chemical environments while increasing ROS levels in
MG63 cells. The results suggested that the decrease in GSH levels
induced by {BiWg} led to ROS-induced DNA damage, which may

Figure 2 Mitochondrial action diagram.
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Table 1 Polyoxometalates and mitochondrial regulatory mechanisms
Characteristics Main findings References
Gelatin methacrylate with Inhibit the production of reactive oxygen species, reduce oxidative stress and (15]
molybdenum-based POM cluster alleviate bone damage
Tungsten-based clusters connected to  Ag active site activates ROS production, triggers oxidative imbalance and inhibits (58]
Ce™ and Ag’ tumor cell proliferation
Tungsten-based nanodots, ultra-high . . . . .
antioxidant activity of W-atoms Reduction of O*, H,0,, mitochondrial targeting [57, 61]
Stabilized sandwich structure
containing {BiWy}, nanoclusters with Reduces GSH levels and enhances ROS generation [62, 63]
Se,W g sandwich structure
Oxide_itive stress, Preparation of thW“’@CS Synergistic action of W** oxidizes GSH and generates sufficient ROS [64]
reactive oxygen nanospheres
species production Ph-sensitive POM clusters Decreased ROS levels and POM as a ROS scavenger to treat inflammation [68]
Nano-enzymes, photothermal co- ~ NIR laser irradiation generates large amounts of reactive oxygen species, leading to (69]
catalysis oxidative stress and cancer cell apoptosis
Lipid droplet-specific photosensitizer White light irradiation generates ROS to trigger lipid peroxidation and induce [70]
(DPCMP) endoplasmic reticulum oxidative stress
Oxygen vacancy (Oy) bimetallic silicate
nanoenzymes with Fe-Ca dual active Fe-Ca dual active site, ROS production [72]
sites
Zgohte 1rr_11dazole modlﬁca_thn, tumor Increase the level of ROS production in tumor [73]
microenvironment, synergistic therapy
ATP synthesis and Containing 10 nuclear heteroatoms  Inhibits mitochondrial ATP synthesis, impedes electron respiration chain function, (76]
the electron transport {SbW,0;.} hinders metabolic function in vivo, and generates large amounts of ROS
chain [Mo0,0,,]* redox Formation of FMN complexes to inhibit ATP synthesis [78,79]
Large PO{I;/Lwtlcl){S}bWQOﬁ}, Stalls the cell cycle in S phase, induces apoptosis, and inhibits cell proliferation [90, 91]
831
Large POM containing Sb Sb triggers p53-dependent apoptotic pathway [92]
Sandwich construction (BWCN) Induction of apoptosis by activation of caspase-3 expression [95]
Cytokines, cycle and Containing Si nanoparticles Inhibits Bcl-2 protein levels, activates caspase3 protein expression and promotes (93]

protein expression

Multifunctional selenium nanoparticles
(SeNPs) loaded with drugs

Binding of metformin to vanadate

Inhibition of NADH oxidation, inhibition of mitochondrial IT and III complexes,

apoptosis

Up-regulates pro-apoptotic proteins Bcl-2 and Bcl-xl, down-regulates anti-
apoptotic protein Bax, inhibits activation of the p53(MAPK) pathway, reduces ROS  [96]
concentration, and prevents mitochondrial dysfunction

inhibition of FADH oxidation (99]

be responsible for the cell death observed in MG63 cells. Fe,Se,W 4
[63], also a sandwich-structured nanocluster, exhibited an
antitumor activity mechanism similar to that of reducing
intracellular GSH levels and enhancing ROS production, leading to
the elimination of tumor cells. Furthermore, Yuan et al. [64]
described the formation of GAW ;@CS nanospheres after preparing
Nag[Gd(W;044),]-xH,0. They used 2’,7’-dichlorofluorescein (DCF)
as a probe to stimulate the generation of excess cytotoxic ROS.
High-energy X-rays, in combination with the synergistic effect of
W¢, were used to oxidize glutathione, generating sufficient ROS to
enhance the therapeutic efficacy of radiotherapy. Liao et al. [15]
designed and synthesized Mo-based POMs along with a novel
advanced nanohydrogel system [65]. Dalong et al. [66] designed
molybdenum-based POM nanoclusters as novel nano-antioxidants
for renal protection. Because renal tubules are susceptible to
oxidative stress, the overproduction of ROS causes mitochondrial
functional impairment, leading to cell death and resulting in AKI
[67]. Dalong found that pretreating HEK293 cells with POM
nanoclusters before H,0O, treatment decreased ROS concentration
and reduced oxidative stress, thereby protecting the cells from ROS
damage. Yang et al. [68] developed a pH-sensitive molybdenum-
based POM nanocluster. Given POM’s high antioxidant properties,
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they investigated its potential to scavenge ROS in cells and found
that ROS levels decreased considerably in POM-pretreated cells
under drug stimulation, indicating a strong ROS scavenging effect.
They concluded that such clusters were preferred as ROS
scavengers for treating colitis, facilitating the transition from
laboratory research to clinical treatment. In recent years, new
materials based on POM have attracted considerable attention for
realizing photothermal synergistic therapy and photodynamic
therapy for treating tumors and cancers using externally induced
light (such as near-infrared light and daylight) and micro-
environments such as tumors and acidity. Tang et al. [69]
synthesized nano-enzymes, termed POMotors, using a one-pot
method, and achieved photothermal catalytic synergistic oncology
therapy by constructing a near-infrared (NIR) laser irradiation
model. In both in vivo and ex vivo studies of POMotors, it was
found that the nano-enzyme generated many ROS under NIR laser
irradiation, leading to oxidative stress and subsequent apoptosis.
Other researchers developed a photosensitizer with lipid droplet
specificity (DPCMP) [70]. It was determined that under white light
irradiation, DPCMP could generate many ROS, which triggered
lipid peroxidation and induced oxidative stress in the endoplasmic
reticulum, ultimately leading to ferroptosis [71] in cancer cells and
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apoptosis. Liu et al. [72] reported oxygen vacancy (Oy)-rich
bimetallic silicate nano-enzymes with Fe-Ca dual active sites. These
nano-enzymes were created by modifying oxidized sodium alginate
and loading gallic acid (GA) (OFeCaSA-V@GA). This modification
allowed the nano-enzymes to adsorb and dissociate H,O,,
stimulating the generation of ROS to achieve synergistic catalytic
effects for targeted, aggregation-enhanced tumor therapy. Song et
al. [73] used a zeolite imidazole framework to modify POM
nanoparticles (POM@ZIF-8 NPs). They combined thermodynamic
and electrodynamic therapies for tumor treatment, and the results
showed that POM@ZIF-8 NPs generated many ROS and exhibited
a high rate of demobilization in the presence of electric field
stimulation and acidic tumor environments, indicating a strong
antitumor effect. These novel POM materials provide diverse
inspirations for future exploration of synergistic therapeutic
approaches using POMs.

4.2 Mitochondrial ATP
transport chain

NADH and FADH,, produced by mitochondrial glucose oxidation,
are oxidized in the electron transport chain (ETC) to generate ATP
and ROS. This process is known as oxidative phosphorylation [17].
Protein kinases maintain energy homeostasis by simultaneously
inhibiting ATP-consuming anabolic processes and promoting ATP-
generating catabolic processes [74]. Insulin secretion is regulated by
mitochondria.  Elevated glucose levels trigger oxidative
phosphorylation in insulin-producing [-cells, increasing the
ATP/ADP ratio. This inhibits K* channels, depolarizes the plasma
membrane, and subsequently increases intracellular Ca* levels [48].
Excessive Ca* accumulation leads to the formation of
mitochondrial permeability transition pores (mtPTPs), resulting in
the uncontrolled release of Ca*, apoptotic factors, and ROS [51].
This impairs the mitochondrial electron transport chain and ATP
synthesis, causing oxidative stress and elevated ROS levels [75].
Research into the mechanisms of ATP synthesis in mitochondria is
highly complex. Here, several novel POMs designed with W and
Mo ions are highlighted. Gong’s group [76] successfully synthesized
a new POM, Na/Ni,Sb,W,-SbWg, based on the 10-nuclear
heteroatom {SbWO;y}. Their findings demonstrated that
Na,Ni,Sb,W,-SbWj inhibited the citric acid cycle by disrupting
mitochondrial ATP synthesis, impairing the electron transport
chain, and affecting the expression of mitochondria-associated
proteins. This disruption in fatty acid B-oxidation and oxidative
phosphorylation impairs metabolic functions in vivo, leads to
excessive ROS generation, and ultimately inhibits tumor cell
proliferation. Fraqueza et al. [77] compared the inhibitory effects of
decanovanadate, decanoate, vanadate, tungstate, and molybdate on
Ca*-ATPase. These substances inhibit ATP production, affect
calcium ion accumulation in calcium pumps, disrupt cell signaling,
and block mitochondrial active sites. The study results indicated
that decanoate and vanadate were the most effective inhibitors.
However, owing to the complex mechanisms through which POMs
exert their antitumor and antidiabetic effects, further research is
needed to fully elucidate their therapeutic potential, particularly for
compounds such as V,,. ATP synthesis is also related to flavin
mononucleotide (FMN) complexes. Mitsui [78] and Ogata [79] et
al. investigated the inhibitory effect of PM-8 on tumor cells. The
observed antitumor activity is likely attributed to the repeated redox
cycling of the anionic form of PM-8, [M0,0,,]* in tumor cells. This
process inhibits ATP production and interferes with the electron
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transfer from NADH to coenzyme Q on the inner mitochondrial
membrane. [Mo,0,,]* forms a 1:1 complex with FMN on this
membrane. FMN is an electron carrier, facilitating the transfer of
electrons from NADH to coenzyme Q [80], and the complex
formed with [Mo,0,,]® inhibited ATP synthesis, thereby
contributing to antitumor activity. Razavi et al. [81] synthsized a
nanolipid-loaded Preyssler (NLP) containing H,,[NaP;W3,0;,] as
a large kind of POM and investigated its in vitro antitumor activity
against HepG2 cancer cells. The study demonstrated that Preyssler
POM charges could cross the cell membrane into the cytoplasm via
active transport, contributing to apoptosis. Furthermore, once
inside the mitochondria, these POMs can form complexes with
FMN that inhibit ATP synthesis.

4.3 Mitochondrial genes and cytokine and protein kinase
expression

The production of excessive ROS by mitochondria makes mtDNA
particularly vulnerable to genetic mutations caused by oxidative
stress and cell cycle arrest. This, in turn, disrupts transcription,
impairs mitochondrial electron transport, hinders the assembly of
mitochondrial ATP synthase, and reduces ATP production [17],
further causing damage to the proteins encoded by mtDNA. Li et
al. [82] reported the successful synthesis of two POMs
functionalized with glycine. They found that compound 1 exhibited
superior antitumor activity compared to compound 2, primarily by
impeding the S-phase of the cell cycle and inducing apoptosis.
Additionally, studies have shown that in obese patients, there is a
general downregulation of mitochondrial oxidative pathways,
including reduced levels of mtDNA, mtDNA-dependent
translational systems, and oxidative phosphorylation mechanisms,
compared to lean patients [83]. In the context of decreased insulin
secretion owing to T2D, Nile et al. [84] determined that mtDNA
deletion in simulated MING cells resulted from the transcriptional
silencing of mitochondrial transcription factors. This led to reduced
mtDNA  gene transcription and translation, impairing
mitochondrial respiration and ATP production, which in turn
affected insulin secretion. It was predicted that mtDNA
transcriptional deletion accelerated aging and increased the risk of
developing T2D. In addition to hyperglycemia, other metabolites
involved in insulin resistance or diabetic states include free fatty
acids (FFAs), specific cytokines such as tumor necrosis factor-a
(TNF-a), and various transcription factors (e.g., FOXO, Nrf2, AP-1,
NEF-kB, PPARS, and Bach 1). These factors collectively contribute to
excessive ROS production by mitochondria, which then regulates
the activation of these factors in a reciprocal manner [85]. ROS
production induced by oncogenes leads to mitochondrial
dysfunction and mtDNA mutations, which further increase ROS
levels and promote apoptosis. Additionally, mitochondrial DNA
instability, primarily resulting from oxidative damage to mtDNA
and elevated mtROS production, contributes to cancer
development [56].

Over the past 30 years, research on POMs for antidiabetic
purposes has steadily increased. Our findings indicate that POMs
exhibit substantial antioxidant effects in vitro [86]. Despite the
growing body of research on POMs, there are currently few reports
on their transport into mitochondria. The development of
mitochondria-targeted antioxidants has become a major focus for
scientists. However, the mechanisms behind the mitochondria-
mediated antioxidant functions of POMs remain unclear. Previous
studies have demonstrated that mitochondria contain numerous
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miRNAs (mt-miRNAs) that are involved in regulating
mitochondrial biosynthesis and function. This raises the question:
Is the antioxidant mechanism of POMs related to mt-miRNAs? To
explore this, we performed a preliminary study [9]. The results
indicated that treatment with POM:s led to considerable changes in
the expression of both genes. By modulating mitochondrial
miRNAs, POMs influence the development of various genes
involved in mitochondrial regulation, including their mt-miRNA
target genes in cultured cells. This action effectively reduces ROS
and scavenges free radicals. ROS are known to damage epithelial
cells by inducing oncogenes through hypermethylation or by
changing histone modification and miRNA expression, which
disrupts epigenetic patterns and contributes to tumorigenesis and
cancer progression [87].

Numerous POMs induce oxidative stress, leading to interactions
between intracellular components and free radicals. This process
opens the mitochondrial permeability transition pore, which
activates the apoptotic pathway [88]. Currently, an increasing
number of teams are adding Sb to POMs to create unique POMs
that contain Sb. For instance, Sun et al. [89] discovered that POMs
(SbW,) inhibited protein kinase phosphorylation by activating the
expression of PTEN (tensin homolog)-deficient proteins,
upregulating the pro-apoptotic gene Bax (Bax = Bcl-2-associated X,
Bcl-2 = b-cell lymphoma-2), and downregulating the anti-apoptotic
gene Bcl-2. These effects ultimately suppressed the proliferation of
NSCLC cells and induced apoptosis. Similarly, the compound
{Nag;M;3(H,0),(ii),(Himi) (SbW033),}* (where M = Ni' (1) and
Co" (2) and ii = imidazole) [90] inhibited cell proliferation by
causing a delay in the S-phase of the cell cycle and inducing
apoptosis. Recent research has increasingly focused on the
synthesis of large POMs. Zhang et al. prepared the homochiral
POM anion {CoSbO,(H,0);[Co(hmta)SbWO5,]5}*.  Their
results demonstrated that this POM complex was more cytotoxic
than {SbyW,,} alone. The increased cytotoxicity was attributed to
the induction of apoptosis pathways. Subsequent analysis of
cellular DNA content revealed that the POMs inhibited cell
proliferation by blocking the cell cycle and reducing the synthesis of
protein complexes with high affinity, which impaired cellular
functions, leading to apoptosis and inhibition of cancer cell
proliferation [91]. Xiao et al. [92] reported the synthesis of a large
Sb-containing  POM,  Hy[Sb;;Tb,W;0,,(OH);(DMF)(H,0)4
(SbW4O40)(SbWy0s3)5]-30H,O.  This  compound  exhibited
considerably enhanced antitumor activity owing to its ability to
activate the p53-dependent apoptotic —pathway, disrupt
mitochondrial membrane function, and induce apoptosis. These
findings offer new insights into incorporating bioactive elements
into POMs for developing novel anticancer drugs. Additionally,
there are ongoing studies investigating the expression of POMs in
mitochondrial genes and proteins, as well as the design of new
nanoparticles and clusters.

The study by Cao et al. [93] demonstrated the in vitro
antiproliferative effects of POM@SiO, nanoparticles on MCF-7 cells
through their synthesis. The authors detailed the apoptosis-
promoting mechanism of POM@SIO, nanoparticles using flow
cytometry, showing that as the nanoparticle concentration
increased, the level of cleaved caspase 3 protein was considerably up-
regulated while the Bcl-2 protein level notably decreased. The
nanoparticles induced apoptosis by reducing Bcl-2 levels and
enhancing caspase 3 expression, thereby exerting antiproliferative
effects on MCF-7 cancer cells. Additionally, another study discussed
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the in vitro antiproliferative activity of K,[V30,(H,0)]-6H,0
(Vig) on MCF-7 and MDA-MB-231 cell lines, suggesting that V4
might induce apoptosis in MCF-7 cells by up-regulating caspase-3
and down-regulating Bcl-2 [94]. Similarly, Wang et al. [95]
characterized (Himi),[Bi,W,,O¢(OH),Co,(H,0)(Na,(H,0),4]-
17H,0 (BWCN) through elemental analysis, infrared (IR)
spectroscopy, thermogravimetric analysis (TGA), and single-crystal
X-ray diffracion. They evaluated this compound as a
chemotherapeutic agent in colon cancer HT-29 cells. The study
found that BWCN inhibited cancer cell proliferation and induced
apoptosis. In POMs-treated human colon cancer HT-29 cells, the
expression of caspase-3 was examined. Results indicated that the
expression of cleaved caspase-3 was considerably up-regulated after
BWCN treatment. These findings suggest that BWCN promotes
apoptosis in HT-29 cells by activating caspase-3. For effective
treatment of spinal cord injuries, Rao et al. [96] used
multifunctional selenium nanoparticles (SeNPs) modified with
soluble polysaccharide-protein complexes (PTWs) and PG-6
peptides (PLGLAGs). These SeNPs were then loaded with
therapeutic drugs tetrahexylsucrose ganglioside monosilane (GM1)
and tetramethylpyrazine (TMP). By reducing the expression of anti-
apoptotic proteins Bax and Bad (Bad = Bcl-2-associated cell death
agonist) while enhancing the expression of pro-apoptotic proteins
Bd-2 and Bd-xl (Bd-xl = b-cell lymphoma-extra-large),
SeNPs@GMI1/TMP inhibited the p53 mitogen pathway.
Furthermore, SeNPs prevented mitochondrial dysfunction, lowered
ROS levels, and exhibited a preventive effect against apoptosis and
G2/M phase arrest induced by tert-butyl hydroperoxide (t-BOOH).
Aureliano et al. [97] provided a systematic review of polymetallic
oxo vanadates (POVs) and their interactions with proteins or
enzymes. The review focused specifically on the interactions
between vanadates and antidiabetic proteins [98], which included
the combination of metformin and vanadates to create a novel
metformin decanoate (Metf-V,40,5) [99, 100]. This compound was
tested on a diabetes model in mice, and its mechanism of action
was found to involve the inhibition of NADH oxidation by both the
vanadium complex and metformin. Specifically, the vanadium
complex inhibited the oxidation processes of mitochondrial
complexes I, II, and III, while metformin also affected these
complexes. Complexes II and III are involved in the oxidation of
FADH,, which is crucial for maintaining the electron transport
chain and ATP production. However, the exact hypoglycemic
effects require further investigation. Additionally, vanadate was
shown to impede NADH oxidation and ATP production by
disrupting the transfer of cytochrome C and cytochrome B1 in the
electron transport chain [101]. Oliveri et al. [102] investigated acute
porphyria in STZ-induced diabetic mice and studied the effects of
vanadate treatment. They determined that vanadate reduces
hepatocyte d-aminolevulinic acid synthase 1 (ALAS1) expression.
This reduction activates the phosphoinositide 3-kinase (PI3K)/Akt
pathway, which in turn decreases the expression of the FOXO1-
PGC-1a nuclear complex. These findings suggest that vanadate
may also have potential therapeutic benefits for other diseases
associated with diabetes.

5 Summary and outlook

Although we have compiled the latest findings on chemical
pathways related to POMs and their effects on antitumor and
antidiabetic disorders, a comprehensive, specific, and systematic
analysis of their mechanisms remains incomplete. Further
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exploration of cellular pathways and biomedical technologies may
be necessary to fully elucidate these mechanisms. Future clinical
studies should focus on promising mitochondria-targeted
antioxidants [103, 104] to develop new therapeutic and preventive
strategies. Antioxidants may offer therapeutic benefits in treating
metabolic diseases such as insulin resistance, tumors associated with
diabetes, non-alcoholic fatty liver disease (NAFLD), and metabolic
syndrome. Additionally, several herbal remedies, such as curcumin
and nanoparticles [105] containing POMs, have been determined
to exhibit antioxidant properties [106]. These results may prove
useful in the future [107]. Further research is needed to explore the
synthesis, intrinsic antioxidant characteristics, and mitochondrial
regulation of novel POMs, as well as the development of other
biological properties. Because different types of POMs (e.g., Keggin-
type, Dawson-type, and Anderson-type) possess different
properties, attention should be paid not only to their antioxidant
capabilities but also to their antitumor, anticancer, and other
biological characteristics. In the rapidly evolving research, it is
crucial to investigate how POMs interact with ROS, energy
synthesis, and protein gene expression related to mitochondrial
regulatory mechanisms. This includes examining various structures
of POMs, such as those based on tungsten and molybdenum. Small,
large, and clustered POMs, along with emerging types such as
nanoplatforms, composites, and combined therapeutics, are
gradually gaining attention. Owing to their diverse and rich
properties, POMs offer considerable potential for development in
the future, particularly in antitumor, anticancer, and antibacterial
applications in biology and medicine.
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