Layered materials are particularly attractive for supercapacitors because of their unique physical, electrical and chemical properties. Here, we demonstrate a facile and scalable electrochemical deposition method for wafer-scale synthesis of quasi-layered tungstate-doped polypyrrole films (named TALPy) with controllable thickness and size. The as-prepared TALPy film exhibits a high gravimetric density and excellent volumetric capacitance, exceeding many high-performing carbon- and polymer-based film electrodes. Based on combined results of ex-situ X-ray diffraction (XRD), Raman and X-ray photoelectron spectroscopy (XPS), it is determined that TALPy stores charge through an ion intercalation process accompanied by change in oxidation states of polypyrrole backbone, which is referred as intercalation pseudocapacitance. All these results suggest the great promise of electrochemical deposition as a scalable and controllable bottom-up approach for synthesizing quasi-layered conductive organic-inorganic hybrid films for electrochemical energy storage applications with high volumetric performance.
Publications
- Article type
- Year
Article type
Year
Research Article
Issue
Nano Research 2023, 16(4): 4895-4900
Published: 12 August 2021
Downloads:89
Total 1