Sort:
Research Article Issue
Single Fe atom-anchored manganese dioxide for efficient removal of volatile organic compounds in refrigerator
Nano Research 2024, 17(5): 3927-3933
Published: 13 January 2024
Abstract PDF (3.4 MB) Collect
Downloads:129

The efficient and rapid removal of volatile organic compounds (VOCs) holds significant importance for ensuring food quality and human health, particularly within the low-temperature confined spaces in refrigerators. However, achieving effective VOCs degradation under such conditions poses challenges in terms of activating inert bonds and facilitating mass transfer. In this study, we propose a novel solution by designing a cleaner module that incorporates 1.07% single Fe atom-anchored manganese dioxide catalysts (FeSAs-MnO2). The combination of single Fe atoms and defect-rich MnO2 substrate efficiently activates molecular oxygen, leading to enhanced generation of highly reactive oxygen species (ROS). Non-thermal plasma (NTP) and circulating fan are introduced to facilitate the regeneration of catalytic activity and improve mass transfer. The FeSAs-MnO2 cleaner module demonstrates exceptional performance in trimethylamine (TMA) removal, achieving a conversion efficiency of 98.9% for 9 ppm within just 9 min. Furthermore, accelerated aging tests predict an extended service life of up to 45 years for the FeSAs-MnO2 cleaner module, surpassing the expected lifespan of refrigerators significantly.

Research Article Issue
Acid-stable antimonate based catalysts for the electrocatalytic oxygen evolution reaction
Nano Research 2023, 16(4): 4691-4697
Published: 29 November 2022
Abstract PDF (4.1 MB) Collect
Downloads:86

Acid-stable and highly active catalysts for the electrocatalytic oxygen evolution reaction (OER) are paramount to the advancement of electrochemical technologies for clean energy conversion and utilization. In this work, based on the density functional theory (DFT) calculations, we systematically investigated the MSb2O6 (M = Fe, Co, and Ni) and transition metal (TM) doped MSb2O6 (TM-MSb2O6, TM = Mn, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ir, and Pt) as potential antimonate-based electrocatalysts for the OER. The stability and OER activity of these considered electrocatalysts were systematically studied under acidic conditions. It was found that Rh-NiSb2O6, Pt-CoSb2O6, Rh-FeSbO4, and Co-NiSb2O6 can serve as efficient and stable OER electrocatalysts, and their OER catalytic activities are better than that of the current state-of-the-art OER catalyst (IrO2). Our findings highlight a family of promising antimonate-based OER electrocatalysts for future experimental verification.

Total 2