Publications
Sort:
Research Article Issue
Doping suppresses lattice distortion of vacant quadruple perovskites to activate self-trapped excitons emission
Nano Research 2024, 17(4): 3068-3078
Published: 27 September 2023
Abstract PDF (8.8 MB) Collect
Downloads:73

The vacancy-ordered quadruple perovskite Cs4CdBi2Cl12, as a newly-emerging lead-free perovskite system, has attracted great research interest due to its excellent stability and direct band gap. However, the poor luminescence performance limits its application in light-emitting diodes (LEDs) and other fields. Herein, for the first time, an Ag+ ion doping strategy was proposed to greatly improve the emission performance of Cs4CdBi2Cl12 synthesized by hydrothermal method. Density functional theory calculations combined with experimental results evidence that the weak orange emission from Cs4CdBi2Cl12 is attributed to the phonon scattering and energy level crossing due to the large lattice distortion under excited states. Fortunately, Ag+ ion doping breaks the intrinsic crystal field environment of Cs4CdBi2Cl12, suppresses the crossover between ground and excited states, and reduces the energy loss in the form of nonradiative recombination. At a critical doping amount of 0.8%, the emission intensity of Cs4CdBi2Cl12:Ag+ reaches the maximum, about eight times that of the pristine sample. Moreover, the doped Cs4CdBi2Cl12 still maintains excellent stability against heat, ultraviolet irradiation, and environmental oxygen/moisture. The above advantages make it possible for this material to be used as solid-state phosphors for white LEDs applications, and the Commission International de I’Eclairage color coordinates of (0.31, 0.34) and high color rendering index of 90.6 were achieved. More importantly, the white LED demonstrates remarkable operation stability in air ambient, showing almost no emission decay after a long working time for 48 h. We believe that this study puts forward an effective ion-doping strategy for emission enhancement of vacancy-ordered quadruple perovskite Cs4CdBi2Cl12, highlighting its great potential as efficient emitter compatible for practical applications.

Total 1