Renewable-energy-driven nitrate (NO3−) electroreduction to ammonia (NH3) (NERA) has been an attractive technology for decarbonizing NH3 production and wastewater treatment. Improving NERA efficiency requires electrocatalysts that are earth-abundant and show fantastic performance. Here we report a semiempirical activity descriptor of eg occupancy (of surface B-site cations) for identifying inexpensive perovskite oxides with extremely high efficacy toward NERA. We establish the descriptor by systematic investigations of more than 10 perovskite oxides. These investigations demonstrate that their intrinsic NERA activities display a volcano-shaped dependence on eg occupancy and the optimized intrinsic activities are accessible at near-1 eg occupancies. This could plausibly be attributed to the favorable overlaps between surface adsorbates and vertically-oriented eg orbitals. More importantly, utilizing this descriptor, we predict a highly active, selective, and durable NERA electrocatalyst with a composition of Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF). Because of its close-to-1 eg occupancy (i.e. ~ 1.2), the BSCF features a superior NH3 production rate of 0.12 g·h−1·mgcat.−1 (Faradaic efficiency of 97.8%) that is at top of the volcano plot, and substantially outperforms most NERA electrocatalysts reported in literature.
Publications
- Article type
- Year
- Co-author
Article type
Year
Communication
Issue
Nano Research 2024, 17(6): 4682-4686
Published: 07 March 2024
Downloads:74
Total 1