PDF (1.6 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Ambient Fast Synthesis of Superaerophobic/ Superhydrophilic Electrode for Superior Electrocatalytic Water Oxidation

Jingjun Shen1Jing Li1,2Bo Li1Yun Zheng1Xiaozhi Bao1Junpo Guo1Yan Guo1Chenglong Lai3Wen Lei1,4 ()Shuangyin Wang5Huaiyu Shao1 ()
Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, SAR 999078, China
Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
Show Author Information

Abstract

Developing cost-effective and facile methods to synthesize efficient and stable electrocatalysts for large-scale water splitting is highly desirable but remains a significant challenge. In this study, a facile ambient temperature synthesis of hierarchical nickel–iron (oxy)hydroxides nanosheets on iron foam (FF-FN) with both superhydrophilicity and superaerophobicity is reported. Specifically, the as-fabricated FF-FN electrode demonstrates extraordinary oxygen evolution reaction (OER) activity with an ultralow overpotential of 195 mV at 10 mA cm−2 and a small Tafel slope of 34 mV dec−1 in alkaline media. Further theoretical investigation indicates that the involved lattice oxygen in nickel–iron-based-oxyhydroxide during electrochemical self-reconstruction can significantly reduce the OER reaction overpotential via the dominated lattice oxygen mechanism. The rechargeable Zn–air battery assembled by directly using the as-prepared FF-FN as cathode displays remarkable cycling performance. It is believed that this work affords an economical approach to steer commercial Fe foam into robust electrocatalysts for sustainable energy conversion and storage systems.

Electronic Supplementary Material

Video
eem-6-6-e12462_ESM2.mp4
eem-6-6-e12462_ESM3.mp4
eem-6-6-e12462_ESM4.mp4
Download File(s)
eem-6-6-e12462_ESM1.docx (14.6 MB)

References

[1]

Y. Jiao, Y. Zheng, M. Jaroniec, S. Z. Qiao, Chem. Soc. Rev. 2015, 44, 2060.

[2]

I. Roger, M. A. Shipman, M. D. Symes, Nat. Rev. Chem. 2017, 1, 1. DOI: https://doi.org/10.1038/s41570-016-0003.

[3]

L. Dai, Z. N. Chen, L. Li, P. Yin, Z. Liu, H. Zhang, Adv. Mater. 2020, 32, 1906915.

[4]

Z.-F. Huang, J. Song, Y. Du, S. Xi, S. Dou, J. M. V. Nsanzimana, C. Wang, Z. J. Xu, X. Wang, Nat. Energy 2019, 4, 329.

[5]

H. Li, S. Chen, Y. Zhang, Q. Zhang, X. Jia, Q. Zhang, L. Gu, X. Sun, L. Song, X. Wang, Nat. Commun. 2018, 9, 1. DOI: https://doi.org/10.1038/s41467-018-04888-0.

[6]

J. Ban, X. Wen, H. Xu, Z. Wang, X. Liu, G. Cao, G. Shao, J. Hu, Adv. Funct. Mater. 2021, 31, 2010472.

[7]

Z. Chen, X. Duan, W. Wei, S. Wang, B.-J. Ni, Nano Energy 2020, 78, 105392.

[8]

W. Cheng, X. Zhao, H. Su, F. Tang, W. Che, H. Zhang, Q. Liu, Nat. Energy 2019, 4, 115.

[9]

Y. Duan, Z. Y. Yu, S. J. Hu, X. S. Zheng, C. T. Zhang, H. H. Ding, B. C. Hu, Q. Q. Fu, Z. L. Yu, X. Zheng, Angew. Chem. Int. Ed. 2019, 58, 15772.

[10]

J. A. D. del Rosario, G. Li, M. F. M. Labata, J. D. Ocon, P.-Y. A. Chuang, Appl. Catal. B Environ. 2021, 288, 119981.

[11]

J. Zhang, T. Wang, D. Pohl, B. Rellinghaus, R. Dong, S. Liu, X. Zhuang, X. Feng, Angew. Chem. Int. Ed. 2016, 128, 6814.

[12]

M. Song, Z. Zhang, Q. Li, W. Jin, Z. Wu, G. Fu, X. Liu, J. Mater. Chem. A 2019, 7, 3697.

[13]

L. Yu, Q. Zhu, S. Song, B. McElhenny, D. Wang, C. Wu, Z. Qin, J. Bao, Y. Yu, S. Chen, Nat. Commun. 2019, 10, 1. DOI: https://doi.org/10.1038/s41467-019-13092-7.

[14]

F. Yu, H. Zhou, Y. Huang, J. Sun, F. Qin, J. Bao, W. A. Goddard, S. Chen, Z. Ren, Nat. Commun. 2018, 9, 1. DOI: https://doi.org/10.1038/s41467-018-04746-z.

[15]

A. Moysiadou, S. Lee, C.-S. Hsu, H. M. Chen, X. Hu, J. Am. Chem. Soc. 2020, 142, 11901.

[16]

N.-T. Suen, S.-F. Hung, Q. Quan, N. Zhang, Y.-J. Xu, H. M. Chen, Chem. Soc. Rev. 2017, 46, 337.

[17]

C. Liang, P. Zou, A. Nairan, Y. Zhang, J. Liu, K. Liu, S. Hu, F. Kang, H. J. Fan, C. Yang, Energy Environ. Sci. 2020, 13, 86.

[18]

X. Zhang, Y. Zhao, Y. Zhao, R. Shi, G. I. Waterhouse, T. Zhang, Adv. Energy Mater. 2019, 9, 1900881.

[19]

L. Trotochaud, S. L. Young, J. K. Ranney, S. W. Boettcher, J. Am. Chem. Soc. 2014, 136, 6744.

[20]

M. Gong, Y. Li, H. Wang, Y. Liang, J. Z. Wu, J. Zhou, J. Wang, T. Regier, F. Wei, H. Dai, J. Am. Chem. Soc. 2013, 135, 8452.

[21]

F. Li, J. Du, X. Li, J. Shen, Y. Wang, Y. Zhu, L. Sun, Adv. Energy Mater. 2018, 8, 1702598.

[22]

M. P. Suryawanshi, U. V. Ghorpade, S. W. Shin, U. P. Suryawanshi, E. Jo, J. H. Kim, ACS Catal. 2019, 9, 5025.

[23]

Q. Zhang, N. M. Bedford, J. Pan, X. Lu, R. Amal, Adv. Energy Mater. 2019, 9, 1901312.

[24]

M. Maleki, G. B. Darband, A. S. Rouhaghdam, R. Andaveh, Z. M. Kazemi, Chem. Commun. 2022, 58, 3545.

[25]

G. B. Darband, N. Lotfi, A. Aliabadi, S. Hyun, S. Shanmugam, Electrochim. Acta 2021, 382, 138335.

[26]

R. Andaveh, G. B. Darband, M. Maleki, A. S. Rouhaghdam, J. Mater. Chem. A 2022, 58, 3545.

[27]

X. Shan, J. Liu, H. Mu, Y. Xiao, B. Mei, W. Liu, G. Lin, Z. Jiang, L. Wen, L. Jiang, Angew. Chem. Int. Ed. 2020, 59, 1659.

[28]

L. Wang, X. Duan, X. Liu, J. Gu, R. Si, Y. Qiu, Y. Qiu, D. Shi, F. Chen, X. Sun, Adv. Energy Mater. 2020, 10, 1903137.

[29]

K. Dong, J. Liang, Y. Wang, Z. Xu, Q. Liu, Y. Luo, T. Li, L. Li, X. Shi, A. M. Asiri, Angew. Chem. Int. Ed. 2021, 133, 10677.

[30]

M. Segall, P. J. Lindan, M. A. Probert, C. J. Pickard, P. J. Hasnip, S. Clark, M. Payne, J. Phys. Condens. Matter 2002, 14, 2717.

[31]

D. Hamann, M. Schlüter, C. Chiang, Phys. Rev. Lett. 1979, 43, 1494.

[32]

J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.

[33]

A. Jain, S. Ong, G. Hautier, W. Chen, W. Richards, S. Dacek, Apl Mater. 2013, 1, 011002.

[34]

Y. Zhao, X. Jia, G. Chen, L. Shang, G. I. Waterhouse, L.-Z. Wu, C.-H. Tung, D. O'Hare, T. Zhang, J. Am. Chem. Soc. 2016, 138, 6517.

[35]

Y. Wang, M. Qiao, Y. Li, S. Wang, Small 2018, 14, 1800136.

[36]

N. Hao, Y. Wei, J. Wang, Z. Wang, Z. Zhu, S. Zhao, M. Han, X. Huang, RSC Adv. 2018, 8, 20576.

[37]

D. Liu, H. Ai, J. Li, M. Fang, M. Chen, D. Liu, X. Du, P. Zhou, F. Li, K. H. Lo, Adv. Energy Mater. 2020, 10, 2002464.

[38]

Q. Wang, L. Shang, R. Shi, X. Zhang, Y. Zhao, G. I. Waterhouse, L. Z. Wu, C. H. Tung, T. Zhang, Adv. Energy Mater. 2017, 7, 1700467.

[39]

W. Li, F. Li, H. Yang, X. Wu, P. Zhang, Y. Shan, L. Sun, Nat. Commun. 2019, 10, 1. DOI: https://doi.org/10.1038/s41467-019-13052-1.

[40]

Z. Cai, L. Li, Y. Zhang, Z. Yang, J. Yang, Y. Guo, L. Guo, Angew. Chem. Int. Ed. 2019, 131, 4233.

[41]

K. Fan, H. Zou, Y. Lu, H. Chen, F. Li, J. Liu, L. Sun, L. Tong, M. F. Toney, M. Sui, ACS Nano 2018, 12, 12369.

[42]

M. Fang, D. Han, W. B. Xu, Y. Shen, Y. Lu, P. Cao, S. Han, W. Xu, D. Zhu, W. Liu, Adv. Energy Mater. 2020, 10, 2001059.

[43]

L. Peng, J. Shen, X. Zheng, R. Xiang, M. Deng, Z. Mao, Z. Feng, L. Zhang, L. Li, Z. Wei, J. Catal. 2019, 369, 345.

[44]

B. Zhao, L. Zhang, D. Zhen, S. Yoo, Y. Ding, D. Chen, Y. Chen, Q. Zhang, B. Doyle, X. Xiong, Nat. Commun. 2017, 8, 1. DOI: https://doi.org/10.1038/ncomms14586.

[45]

L. Wu, L. Yu, B. McElhenny, X. Xing, D. Luo, F. Zhang, J. Bao, S. Chen, Z. Ren, Appl. Catal. B Environ. 2021, 294, 120256.

[46]

L. Yu, L. Wu, B. McElhenny, S. Song, D. Luo, F. Zhang, Y. Yu, S. Chen, Z. Ren, Energy Environ. Sci. 2020, 13, 3439.

[47]

J. Shen, B. Li, Y. Zheng, Z. Dai, J. Li, X. Bao, J. Guo, X. Yu, Y. Guo, M. Ge, Chem. Eng. J. 2021, 433, 133517.

[48]

Q. Hu, Z. Wang, X. Huang, Y. Qin, H. Yang, X. Ren, Q. Zhang, J. Liu, M. Shao, C. He, Appl. Catal. B Environ. 2021, 286, 119920.

[49]

M. Maleki, A. Sabour Rouhaghdam, G. Barati Darband, D. Han, S. Shanmugam, ACS Appl. Energy Mater. 2022, 5, 2937.

[50]

B. S. Yeo, A. T. Bell, J. Phys. Chem. C 2012, 116, 8394.

[51]

Y.-Z. Su, K. Xiao, N. Li, Z.-Q. Liu, S.-Z. Qiao, J. Mater. Chem. A 2014, 2, 13845.

[52]

X. Rong, J. Parolin, A. M. Kolpak, ACS Catal. 2016, 6, 1153.

[53]

J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, Y. Shao-Horn, Science 2011, 334, 1383.

[54]

Z. W. I. J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov, T. F. Jaramillo, Science 2017, 355, eaad4998.

[55]

J. H. Montoya, L. C. Seitz, P. Chakthranont, A. Vojvodic, T. F. Jaramillo, J. K. Nørskov, Nat. Mater. 2017, 16, 70.

[56]

J. S. Yoo, X. Rong, Y. Liu, A. M. Kolpak, ACS Catal. 2018, 8, 4628.

[57]

A. Grimaud, O. Diaz-Morales, B. Han, W. T. Hong, Y.-L. Lee, L. Giordano, K. A. Stoerzinger, M. T. Koper, Y. Shao-Horn, Nat. Chem. 2017, 9, 457.

[58]

X. Wang, Z. Pan, X. Chu, K. Huang, Y. Cong, R. Cao, R. Sarangi, L. Li, G. Li, S. Feng, Angew. Chem. Int. Ed. 2019, 58, 11720.

[59]

Y. Pan, X. Xu, Y. Zhong, L. Ge, Y. Chen, J.-P. M. Veder, D. Guan, R. O'Hayre, M. Li, G. Wang, Nat. Commun. 2020, 11, 1. DOI: https://doi.org/10.1038/s41467-020-15873-x.

Energy & Environmental Materials
Cite this article:
Shen J, Li J, Li B, et al. Ambient Fast Synthesis of Superaerophobic/ Superhydrophilic Electrode for Superior Electrocatalytic Water Oxidation. Energy & Environmental Materials, 2023, 6(6). https://doi.org/10.1002/eem2.12462
Metrics & Citations  
Article History
Copyright
Return