The introduction of materials with dual-functionalities, i.e., the catalytic (adsorption) features to inhibit shuttle effects at the cathode side, and the capability to facilitate homogenous Li-ion fluxes at the anode side, is a promising strategy to realize high performance lithium-sulfur batteries (LSBs). Herein, a facile and rational organic “ligand-induced” (trimesic acid (TMA)) transformation tactic is proposed, which achieves the regulation of electronic performance and d-band center of bimetallic oxides (NiFe2O4) to promote bidirectional sulfur conversion kinetics and stabilize the Li plating/striping during the charge/discharge process. The battery assembled with NiFe2O4-TMA modified separator exhibits a remarkable initial specific capacity of 1476.6 mAh·g−1 at 0.1 C, outstanding rate properties (661.1 mAh·g−1 at 8.0 C), and excellent cycling ability. The “ligand-induced” transformation tactic proposed in this work will open a whole new possibility for tuning the electronic structure and d-band center to enhance the performance of LSBs
Developing cost-effective and facile methods to synthesize efficient and stable electrocatalysts for large-scale water splitting is highly desirable but remains a significant challenge. In this study, a facile ambient temperature synthesis of hierarchical nickel–iron (oxy)hydroxides nanosheets on iron foam (FF-FN) with both superhydrophilicity and superaerophobicity is reported. Specifically, the as-fabricated FF-FN electrode demonstrates extraordinary oxygen evolution reaction (OER) activity with an ultralow overpotential of 195 mV at 10 mA cm−2 and a small Tafel slope of 34 mV dec−1 in alkaline media. Further theoretical investigation indicates that the involved lattice oxygen in nickel–iron-based-oxyhydroxide during electrochemical self-reconstruction can significantly reduce the OER reaction overpotential via the dominated lattice oxygen mechanism. The rechargeable Zn–air battery assembled by directly using the as-prepared FF-FN as cathode displays remarkable cycling performance. It is believed that this work affords an economical approach to steer commercial Fe foam into robust electrocatalysts for sustainable energy conversion and storage systems.