PDF (3.4 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Realizing Highly Reversible Zinc Anode via Controlled-current Pre-deposition

Xinghang Chen1Ming Li1Qi Li1,2 ()Yuzhu Chen3,4Buke Wu3,4,5Meng Lin3,4()Qinyou An1Liqiang Mai1()
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Hubei, Wuhan 430070, China
Foshan Xianhu Laboratory of the Advanced Energy Science and Technology, Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, China
Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen China
Shenzhen Key Laboratory of Advanced Energy Storage, Southern University of Science and Technology, Shenzhen 518055, China
Show Author Information

Abstract

Aqueous zinc ion batteries have been considered as the prominent candidate in the next-generation batteries for its low cost, safety and high theoretical capacity. Nonetheless, formation of zinc dendrites and side reactions at the electrode/electrolyte interface during the zinc plating/stripping process affect the cycling reversibility of the zinc anode. Regulation of the zinc plating/ stripping process and realizing a highly reversible zinc anode is a great challenge. Herein, we applied a simple and effective approach of controlled-current zinc pre-deposition at copper mesh. At the current density of 40 mA cm−2, where the electron/ion transfers are both continuous and balanced, the Zn@CM-40 electrode with the (002) crystal plane orientation and the compactly aligned platelet morphology was successfully obtained. Compared with the zinc foil, the Zn@CM-40 exhibits greatly enhanced reversibility in the repeated plating/stripping (850 h at 1 mA cm−2) for the symmetric battery test. A series of characterization techniques including electrochemical analyses, XRD, SEM and optical microscopy observation, were used to demonstrate the correlation between the structure of pre-deposited zinc layer and the cycling stability. The COSMOL Multiphysics modeling demonstrates a more uniform electric field distribution in the Zn@CM than the zinc foil due to the aligned platelet morphology. Furthermore, the significant improvement is also achieved in a Zn||MnO2 full battery with a high capacity-retention (87% vs 47.8%). This study demonstrates that controlled-current electrodeposition represents an important strategy to regulate the crystal plane orientation and the morphology of the pre-deposited zinc layer, hence leading to the highly reversible and dendrite-free zinc anode for high-performance zinc ion batteries.

Electronic Supplementary Material

Download File(s)
eem-6-6-e12480_ESM.docx (8.8 MB)

References

[1]

M. Song, H. Tan, D. Chao, H. J. Fan, Adv. Funct. Mater. 2018, 28, 1802564.

[2]

P. Canepa, G. Sai Gautam, D. C. Hannah, R. Malik, M. Liu, K. G. Gallagher, K. A. Persson, G. Ceder, Chem. Rev. 2017, 117, 4287.

[3]

B. Dunn, H. Kamath, J.-M. Tarascon, Science 2011, 334, 928.

[4]

B. Liu, Y. Zhang, Z. Wang, C. Ai, S. Liu, P. Liu, Y. Zhong, S. Lin, S. Deng, Q. Liu, G. Pan, X. Wang, X. Xia, J. Tu, Adv. Mater. 2020, 32, 2003657.

[5]

X. Meng, Y. Sun, M. Yu, Z. Wang, J. Qiu, Small Sci. 2021, 1, 2100021.

[6]

Y. Dai, X. Liao, R. Yu, J. Li, S. Tan, P. He, Q. An, Q. Wei, L. Chen, X. Hong, K. Zhao, Y. Ren, J. Wu, Y. Zhao, L. Mai, Adv. Mater. 2021, 33, 2100359.

[7]

C. Xu, B. Li, H. Du, F. Kang, Angew. Chem. Int. Ed. 2012, 124, 957.

[8]

D. Chao, W. Zhou, C. Ye, Q. Zhang, Y. Chen, L. Gu, K. Davey, S. Qiao, Angew. Chem. Int. Ed. 2019, 131, 7905.

[9]

Y. Dai, J. Li, L. Chen, K. Le, Z. Cai, Q. An, L. Zhang, L. Mai, ACS Energy Lett. 2021, 6, 684.

[10]

C. Han, W. Li, H. K. Liu, S. Dou, J. Wang, Nano Energy 2020, 74, 104880.

[11]

L. Kang, M. Cui, F. Jiang, Y. Gao, H. Luo, J. Liu, W. Liang, C. Zhi, Adv. Energy Mater. 2018, 8, 1801090.

[12]

M. Li, J. Meng, Q. Li, M. Huang, X. Liu, K. A. Owusu, Z. Liu, L. Mai, Adv. Funct. Mater. 2018, 28, 1802016.

[13]

P. He, J. Huang, ACS Energy Lett. 2021, 6, 1990.

[14]

Z. Cao, P. Zhuang, X. Zhang, M. Ye, J. Shen, P. M. Ajayan, Adv. Energy Mater. 2020, 10, 2001599.

[15]

G. Fang, J. Zhou, A. Pan, S. Liang, ACS Energy Lett. 2018, 3, 2480.

[16]

C. Li, X. Xie, S. Liang, J. Zhou, Energy Environ. Mater. 2020, 3, 146.

[17]

Y. Wu, M. Wang, Y. Tao, K. Zhang, M. Cai, Y. Ding, X. Liu, T. Hayat, A. Alsaedi, S. Dai, Adv. Funct. Mater. 2020, 30, 1907120.

[18]

Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li, Y. Zhang, C. Wang, G. Cui, Energ. Environ. Sci. 2019, 12, 1938.

[19]

F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun, F. Han, A. Faraone, J. A. Dura, K. Xu, C. Wang, Nat. Mater. 2018, 17, 543.

[20]

M. Li, Z. Li, X. Wang, J. Meng, X. Liu, B. Wu, C. Han, L. Mai, Energ. Environ. Sci. 2021, 14, 3796.

[21]

P. Liang, J. Yi, X. Liu, K. Wu, Z. Wang, J. Cui, Y. Liu, Y. Wang, Y. Xia, J. Zhang, Adv. Funct. Mater. 2020, 30, 1908528.

[22]

Z. Cai, Y. Ou, J. Wang, R. Xiao, L. Fu, Z. Yuan, R. Zhan, Y. Sun, Energy Storage Mater. 2020, 27, 205.

[23]

Q. Yang, Y. Guo, B. Yan, C. Wang, Z. Liu, Z. Huang, Y. Wang, Y. Li, H. Li, L. Song, J. Fan, C. Zhi, Adv. Mater. 2020, 32, 2001755.

[24]

L. Dong, W. Yang, W. Yang, H. Tian, Y. Huang, X. Wang, C. Xu, C. Wang, F. Kang, G. Wang, Chem. Eng. J. 2020, 384, 123355.

[25]

D. Yuan, J. Zhao, H. Ren, Y. Chen, R. Chua, E. T. J. Jie, Y. Cai, E. Edison, W. Manalastas, M. W. Wong, M. Srinivasan, Angew. Chem. Int. Ed. 2021, 133, 7289.

[26]

Y. Jin, K. S. Han, Y. Shao, M. L. Sushko, J. Xiao, H. Pan, J. Liu, Adv. Funct. Mater. 2020, 30, 2003932.

[27]

A. Mitha, A. Z. Yazdi, M. Ahmed, P. Chen, ChemElectroChem 2018, 5, 2409.

[28]

W. Li, K. Wang, S. Cheng, K. Jiang, Energy Storage Mater. 2018, 15, 14.

[29]

Y. Zeng, X. Zhang, R. Qin, X. Liu, P. Fang, D. Zheng, Y. Tong, X. Lu, Adv. Mater. 2019, 31, 1903675.

[30]

L. Wang, W. Huang, W. Guo, Z. H. Guo, C. Chang, L. Gao, X. Pu, Adv. Funct. Mater. 2022, 32, 2108533.

[31]

Q. Zhang, J. Luan, X. Huang, L. Zhu, Y. Tang, X. Ji, H. Wang, Small 2020, 16, 2000929.

[32]

Z. Kang, C. Wu, L. Dong, W. Liu, J. Mou, J. Zhang, Z. Chang, B. Jiang, G. Wang, F. Kang, C. Xu, ACS Sustain. Chem. Eng. 2019, 7, 3364.

[33]

Q. Zhang, J. Luan, L. Fu, S. Wu, Y. Tang, X. Ji, H. Wang, Angew. Chem. Int. Ed. 2019, 58, 15841.

[34]

M. Zhou, S. Guo, J. Li, X. Luo, Z. Liu, T. Zhang, X. Cao, M. Long, B. Lu, A. Pan, G. Fang, J. Zhou, S. Liang, Adv. Mater. 2021, 33, 2100187.

[35]

X. Zhang, J. Li, D. Liu, M. Liu, T. Zhou, K. Qi, L. Shi, Y. Zhu, Y. Qian, Energ. Environ. Sci. 2021, 14, 3120.

[36]

C. Niu, D. Liu, J. A. Lochala, C. S. Anderson, X. Cao, M. E. Gross, W. Xu, J.-G. Zhang, M. S. Whittingham, J. Xiao, J. Liu, Nat. Energy 2021, 6, 723.

[37]

J. Zheng, Q. Zhao, T. Tang, J. Yin, C. D. Quilty, G. D. Renderos, X. Liu, Y. Deng, L. Wang, D. C. Bock, C. Jaye, D. Zhang, E. S. Takeuchi, K. J. Takeuchi, A. C. Marschilok, L. A. Archer, Science 2019, 366, 645.

[38]

K. Zhang, Z. Yan, J. Chen, Joule 2020, 4, 10.

[39]

L. Chen, S. Zhao, Y. Liu, M. Horne, A. M. Bond, J. Zhang, J. Electrochem. Soc. 2015, 163, H3043.

[40]

Z. Wang, J. Huang, Z. Guo, X. Dong, Y. Liu, Y. Wang, Y. Xia, Joule 2019, 3, 1289.

[41]

N. A. Pangarov, Electrochim. Acta 1964, 9, 721.

[42]

Y. B. Yim, W. S. Hwang, S. K. Hwang, J. Electrochem. Soc. 1995, 142, 2604.

[43]

K. E. K. Sun, T. K. A. Hoang, T. N. L. Doan, Y. Yu, P. Chen, Chem. A Eur. J. 2018, 24, 1667.

[44]

L. Ai, J. Su, M. Wang, J. Jiang, ACS Sustain. Chem. Eng. 2018, 6, 9912.

[45]

M. K. Aslam, Y. Niu, T. Hussain, H. Tabassum, W. Tang, M. Xu, R. Ahuja, Nano Energy 2021, 86, 106142.

[46]

K. E. K. Sun, T. K. A. Hoang, T. N. L. Doan, Y. Yu, X. Zhu, Y. Tian, P. Chen, ACS Appl. Mater. Interfaces 2017, 9, 9681–7.

[47]

J. Zheng, Y. Deng, J. Yin, T. Tang, R. Garcia-Mendez, Q. Zhao, L. A. Archer, Adv. Mater. 2022, 34, 2106867.

[48]

W. He, S. Zuo, X. Xu, L. Zheng, L. Liu, W. Zhao, J. Liu, Mater. Chem. Front. 2021, 5, 2201–17.

[49]

Q. Jian, Y. Wan, J. Sun, M. Wu, T. Zhao, J. Mater. Chem. A 2020, 8, 20175–84.

[50]

A. Bayaguud, X. Luo, Y. Fu, C. Zhu, ACS Energy Lett. 2020, 5, 3012–20.

[51]

J. Zhao, J. Zhang, W. Yang, B. Chen, Z. Zhao, H. Qiu, S. Dong, X. Zhou, G. Cui, L. Chen, Nano Energy 2019, 57, 625.

[52]

Z. Li, W. Deng, C. Li, W. Wang, Z. Zhou, Y. Li, X. Yuan, J. Hu, M. Zhang, J. Zhu, W. Tang, X. Wang, R. Li, J. Mater. Chem. A 2020, 8, 17725.

[53]

J. M. Wang, L. Zhang, C. Zhang, J. Q. Zhang, J. Power Sources 2001, 102, 139.

[54]

S. Wu, Z. Zhang, M. Lan, S. Yang, J. Cheng, J. Cai, J. Shen, Y. Zhu, K. Zhang, W. Zhang, Adv. Mater. 2018, 30, 1705830.

[55]

Z. Wu, X. Yuan, M. Jiang, L. Wang, Q. Huang, L. Fu, Y. Wu, Energy Fuel 2020, 34, 13118.

[56]

W. Dong, J.-L. Shi, T.-S. Wang, Y.-X. Yin, C.-R. Wang, Y.-G. Guo, RSC Adv. 2018, 8, 19157–63.

[57]

L.-P. Wang, N.-W. Li, T.-S. Wang, Y.-X. Yin, Y.-G. Guo, C.-R. Wang, Electrochim. Acta 2017, 244, 172.

[58]

Q. Cao, H. Gao, Y. Gao, J. Yang, C. Li, J. Pu, J. Du, J. Yang, D. Cai, Z. Pan, C. Guan, W. Huang, Adv. Funct. Mater. 2021, 31, 2103922.

[59]

J. Zheng, L. A. Archer, Sci. Adv. 2021, 7, eabe0219.

[60]

W. Zhang, Q. Zhao, Y. Hou, Z. Shen, L. Fan, S. Zhou, Y. Lu, L. A. Archer, Sci. Adv. 2021, 7, eabl3752.

[61]

L. Ma, Q. Li, Y. Ying, F. Ma, S. Chen, Y. Li, H. Huang, C. Zhi, Adv. Mater. 2021, 33, 2007406.

[62]

J. Y. Kim, G. Liu, G. Y. Shim, H. Kim, J. K. Lee, Adv. Funct. Mater. 2020, 30, 2004210.

[63]

M. Li, Q. He, Z. Li, Q. Li, Y. Zhang, J. Meng, X. Liu, S. Li, B. Wu, L. Chen, Z. Liu, W. Luo, C. Han, L. Mai, Adv. Energy Mater. 2019, 9, 1901469.

Energy & Environmental Materials
Cite this article:
Chen X, Li M, Li Q, et al. Realizing Highly Reversible Zinc Anode via Controlled-current Pre-deposition. Energy & Environmental Materials, 2023, 6(6). https://doi.org/10.1002/eem2.12480
Metrics & Citations  
Article History
Copyright
Return