Industrially prepared artificial graphite (AG) is attractive for potassium-ion batteries (PIBs), but its rate performance is poor and the production process is energy intensive, so developing an efficient strategy to produce novel graphite with low energy consumption and high performance is economically important. Herein, a nanostructured graphite composed of multi-walled carbon nanotubes (MWCNTs) and graphite shells was prepared by one-pot method through low-temperature pyrolysis of iron-based metal-organic framework (MOF) and carbon source. The high graphitization degree of nanostructured graphite makes the initial Coulombic efficiency (ICE) exceed 80%, and the three-dimensional (3D) conductive network ensures a specific capacity of 234 mAh·g−1 after 1000 cycles at a high current density of 500 mA·g−1. In addition, the typical graphite potassium storage mechanism is also demonstrated by in situ X-ray diffraction (XRD) and in situ Raman spectroscopy, and its practicality is also proved by the voltage of the full cells. This work provides a feasible way to optimize the practical production process of AG and expand its application in energy storage.
- Article type
- Year
- Co-author
Aqueous zinc ion batteries (AZIBs) are ideal candidates for large-scale battery storage, with a high theoretical specific capacity, ecological friendliness, and extremely low cost but are strongly hindered by zinc dendrite growth. Herein, Ni-Zn alloy is artificially constructed as a solid-electrolyte interface (SEI) for Zn anodes by electrodeposition and annealing. The Ni-Zn alloy layer acts as a dynamic shield at the electrode/electrolyte interface. Interestingly, the zinc atoms migrate out of the electrode body during zinc stripping while merging into the electrode body during the plating. In this way, the Ni-Zn alloy is able to guide the zinc deposition in the horizontal direction, thereby suppressing the formation of dendrite. Benefiting from those, the Ni-Zn alloy symmetric cell shows a greatly improved cycle life and is able to operate stably for 1,900 h at a current density of 0.5 mA·cm−2. The present study is a strategy for negative electrode protection of AZIBs.
Advances in electrochemical energy storage technologies drive the need for battery safety performance and miniaturization, which calls for the easily processable polymer electrolytes suitable for on-chip microbattery technology. However, the low ionic conductivity of polymer electrolytes and poor-patternable capabilities hinder their application in microdevices. Herein, we modified SU-8, as the matrix material, by poly(ethylene oxide) (PEO) with lithium salts to obtain a patternable lithium-ion polymer electrolyte. Due to the highly amorphous state and more Li-ion transport pathways through blending effect and the increase in number of epoxides, the ionic conductivity of achieved sample is increased by an order of magnitude to 2.9 × 10−4 S·cm−1 in comparison with the SU-8 sample at 50 °C. The modified SU-8 exhibits good thermal stability (> 150 °C), mechanical properties (elastic modulus of 1.52 GPa), as well as an electrochemical window of 4.3 V. Half-cell and microdevice were fabricated and tested to verify the possibility of the micro-sized on-chip battery. All of these results demonstrate a promising strategy for the integration of on-chip batteries with microelectronics.
Surface modification of graphene oxide (GO) is a powerful strategy to develop its energy density for electrochemical energy storage. However, pre-modified GO always exhibits unsatisfactory hydrophilia and its ink-relevant utilization is extremely limited. Although GO ink is widely utilized in fabricating micro energy storage devices via extrusion-based 3D-printing, simultaneously obtaining satisfactory hydrophilia and high energy density still remains a challenge. In this work, an in-situ surface engineering strategy was employed to enhance the performance of GO micro-supercapacitor chips. Three dimensionally printed GO micro-supercapacitor chips were treated with pyrrole monomer to achieve selective and spontaneous anchoring of polypyrrole on the microelectrodes without affecting interspaces between the finger electrodes. The interface-reinforced graphene scaffolds were edge-welded and exhibited a considerably improved specific capacitance, from 13.6 to 128.4 mF·cm−2. These results are expected to provide a new method for improving the performance of micro-supercapacitors derived from GO inks and further strengthen the practicability of 3D printing techniques in fabricating energy storage devices.
Aqueous rechargeable zinc ion batteries (ARZIBs) have received unprecedented attention owing to the low cost and high-safety merits. However, their further development and application are hindered by the issues of electrodes such as cathode dissolution, zinc anode dendrite, passivation, as well as sluggish reaction kinetics. Designing heterostructure electrodes is a powerful method to improve the electrochemical performance of electrodes by grafting the advantages of functional materials onto the active materials. In this review, various modified heterostructure electrodes with optimized electrochemical performance and wider applications are introduced. Moreover, the synergistic effect between active materials and functional materials are also in-depth analyzed. The specific modification methods are divided into interphase modification (electrode-electrolyte interphase and electrode-current collector interphase) and structure optimization. Finally, the conclusion and future perspective on the optimization mechanism of functional materials, and the cost issue of practical heterostructure electrodes in ARZIBs are also proposed. It is expected that this review can promote the further development of ARZIBs towards practical utility.
In this work, homogeneous Ni0.33Co0.67Se hollow nanoprisms were synthesized successfully in virtue of Kirkendall effect. It is the first time for bimetallic Ni-Co compounds Ni0.33Co0.67Se to be used in lithium-ion batteries (LIBs). Impressively, the Ni0.33Co0.67Se hollow nanoprisms show superior specific capacity (1, 575 mAh/g at the current density of 100 mA/g) and outstanding rate performance (850 mAh/g at 2, 000 mA/g) as anode material for LIBs. This work proves the potential of bimetallic chalcogenide compounds as high performance anode materials for LIBs.
K-ion battery (KIB) is a new-type energy storage device that possesses potential advantages of low-cost and abundant resource of potassium. To develop advanced electrode materials for accommodating the large size and high activity of potassium ion is of great interests. Herein, a segment-like antimony (Sb) nanorod encapsulated in hollow carbon tube electrode material (Sb@HCT) was prepared. Beneficial from the virtue of abundant nitrogen doping in carbon tube, one-dimensional and hollow structure advantages, Sb@HCT exhibits excellent potassium storage properties: in the case of potassium bis(fluorosulfonyl)imide (KFSI) electrolyte, Sb@HCT displays a reversible capacity of up to 453.4 mAh·g-1 at a current density of 0.5 A·g-1 and good rate performance (a capacity of 211.5 mAh·g-1 could be achieved at an ultrahigh rate of 5 A·g-1). Additionally, Sb@HCT demonstrates excellent long-cycle stability at a current density of 2 A·g-1 over 120 cycles. Meanwhile, electrolyte optimization is an effective strategy for greatly improving electrochemical performance. Through ex-situ characterizations, we disclosed the potassiation of Sb anode is quite reversible and undergoes multistep processes, combining solid solution reaction and two-phase reaction.
Subtle structural changes during electrochemical processes often relate to the degradation of electrode materials. Characterizing the minute-variations in complementary aspects such as crystal structure, chemical bonds, and electron/ion conductivity will give an in-depth understanding on the reaction mechanism of electrode materials, as well as revealing pathways for optimization. Here, vanadium pentoxide (V2O5), a typical cathode material suffering from severe capacity decay during cycling, is characterized by in-situ X-ray diffraction (XRD) and in-situ Raman spectroscopy combined with electrochemical tests. The phase transitions of V2O5 within the 0–1 Li/V ratio are characterized in detail. The V–O and V–V distances became more extended and shrank compared to the original ones after charge/discharge process, respectively. Combined with electrochemical tests, these variations are vital to the crystal structure cracking, which is linked with capacity fading. This work demonstrates that chemical bond changes between the transition metal and oxygen upon cycling serve as the origin of the capacity fading.
As one of the most important micro energy storage devices (MESDs), graphene-based micro-supercapacitors (G-MSCs) possess the advantages of excellent flexibility, long cycle life, affordability and high reliability. In most cases, constructing three-dimensional (3D) graphene networks is widely utilized to promote the permeation of electrolyte and enhance the utilization of active materials. In this work, conventional freeze-drying process is utilized in the fabrication of G-MSCs to constitute 3D interconnected networks micro-electrodes, and further by regulating the composition of inks, carbon spheres (CSs) at different mass loadings are introduced into the graphene scaffolds to further increase the active sites of the micro-electrodes. The fabricated all carbon-based MSC with the optimal mass loading of CSs (0.406 mg cm−2) exhibits a high specific areal capacitance of 17.01 mF cm−2 at the scan rate of 10 mV s−1 and a capacitance retention of 93.14% after 10000 cycles at the scan rate of 500 mV s−1. The proposed microfabrication process is facile and fully compatible with modern microtechnologies and will be highly suitable for large-scale production and integration.
As a promising candidate for next generation energy storage devices, lithium sulfur (Li-S) batteries still confront rapid capacity degradation and low rate capability. Herein, we report a well-architected porous nitrogen-doped carbon/MnO coaxial nanotubes (MnO@PNC) as an efficient sulfur host material. The host shows excellent electron conductivity, sufficient ion transport channels and strong adsorption capability for the polysulfides, resulting from the abundant nitrogen-doped sites and pores as well as MnO in the carbon shell of MnO@PNC. The MnO@PNC-S composite electrode with a sulfur content of 75 wt.% deliveries a specific capacity of 802 mAh·g-1 at a high rate of 5.0 C and outstanding cycling stability with a capacity retention of 82% after 520 cycles at 1.0 C.