PDF (5.2 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article | Open Access

Tuning Structural and Electronic Configuration of FeN4 via External S for Enhanced Oxygen Reduction Reaction

Shidong Li1Lixue Xia1Jiantao Li4Zhuo Chen1Wei Zhang1Jiexin Zhu1Ruohan Yu5Fang Liu5Sungsik Lee6Yan Zhao7,8 ()Liang Zhou1,2,3 ()Liqiang Mai1,2,3()
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan 528200, China
Hubei Longzhong Laboratory, Xiangyang 441000, China
Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
NRC (Nanostructure Research Centre), Wuhan University of Technology, Wuhan 430070, China
X-ray Science Division, Advanced Photon Sources, Argonne National Laboratory, 9700 South Cass, Avenue, Lemont, IL 60439, USA
State Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
Show Author Information

Abstract

The Fe–N–C material represents an attractive oxygen reduction reaction electrocatalyst, and the FeN4 moiety has been identified as a very competitive catalytic active site. Fine tuning of the coordination structure of FeN4 has an essential impact on the catalytic performance. Herein, we construct a sulfur-modified Fe–N–C catalyst with controllable local coordination environment, where the Fe is coordinated with four in-plane N and an axial external S. The external S atom affects not only the electron distribution but also the spin state of Fe in the FeN4 active site. The appearance of higher valence states and spin states for Fe demonstrates the increase in unpaired electrons. With the above characteristics, the adsorption and desorption of the reactants at FeN4 active sites are optimized, thus promoting the oxygen reduction reaction activity. This work explores the key point in electronic configuration and coordination environment tuning of FeN4 through S doping and provides new insight into the construction of M–N–C-based oxygen reduction reaction catalysts.

Electronic Supplementary Material

Download File(s)
eem-7-2-e12560_ESM1.docx (55 KB)
eem-7-2-e12560_ESM2.docx (4.4 MB)

References

[1]

M. Escudero-Escribano, P. Malacrida, M. H. Hansen, U. G. Vej-Hansen, A. Velázquez-Palenzuela, V. Tripkovic, J. Schiøtz, J. Rossmeisl, I. E. L. Stephens, I. Chorkendorff, Science 2016, 352, 73.

[2]

V. R. Stamenkovic, D. Strmcnik, P. P. Lopes, N. M. Markovic, Nat. Mater. 2017, 16, 57.

[3]

Z. Zhuang, Y. Li, R. Yu, L. Xia, J. Yang, Z. Lang, J. Zhu, J. Huang, J. Wang, Y. Wang, L. Fan, J. Wu, Y. Zhao, D. Wang, Y. Li, Nat. Catal. 2022, 5, 300.

[4]

Q. Yu, J. Lv, J. Li, R. Yu, J. Wu, S. Xi, X. Li, N. Xu, L. Zhou, L. Mai, Energy Environ. Mater. 2022, DOI: 10.1002/eem2.12389.

[5]

J. Zhu, L. Xia, R. Yu, R. Lu, J. Li, R. He, Y. Wu, W. Zhang, X. Hong, W. Chen, Y. Zhao, L. Zhou, L. Mai, J. Am. Chem. Soc. 2022, 144, 15529.

[6]

A. A. Gewirth, J. A. Varnell, A. M. DiAscro, Chem. Rev. 2018, 118, 2313.

[7]

K. Kumar, P. Gairola, M. Lions, N. Ranjbar-Sahraie, M. Mermoux, L. Dubau, A. Zitolo, F. Jaouen, F. Maillard, ACS Catal. 2018, 8, 11264.

[8]

Z. Zhuang, Y. Li, J. Huang, Z. Li, K. Zhao, Y. Zhao, L. Xu, L. Zhou, L. V. Moskaleva, L. Mai, Sci. Bull. 2019, 64, 617.

[9]

Z. Zhuang, J. Huang, Y. Li, L. Zhou, L. Mai, ChemElectroChem 2019, 6, 3570.

[10]

R. Paul, Q. Zhai, A. K. Roy, L. Dai, Interdiscip. Mater. 2022, 1, 28.

[11]

S. H. Lee, J. Kim, D. Y. Chung, J. M. Yoo, H. S. Lee, M. J. Kim, B. S. Mun, S. G. Kwon, Y. E. Sung, T. Hyeon, J. Am. Chem. Soc. 2019, 141, 2035.

[12]

J. Zhang, Y. Chen, Y. Liu, X. Liu, S. Gao, Sci. China Mater. 2021, 65, 653.

[13]

H. Wang, L. Cao, Y. Feng, J. Chen, W. Feng, T. Luo, Y. Hu, C. Yuan, Y. Zhao, Y. Zhao, K. Kajiyoshi, Y. Liu, Z. Li, J. Huang, Chin. Chem. Lett. 2022, DOI: 10.1016/j.cclet.2022.06.024.

[14]

L. Zhong, J. O. Jensen, L. N. Cleemann, C. Pan, Q. Li, Sci. Bull. 2018, 63, 24.

[15]

X. Ao, W. Zhang, Z. Li, J. G. Li, L. Soule, X. Huang, W. H. Chiang, H. M. Chen, C. Wang, M. Liu, X. C. Zeng, ACS Nano 2019, 13, 11853.

[16]

Y. Mun, S. Lee, K. Kim, S. Kim, S. Lee, J. W. Han, J. Lee, J. Am. Chem. Soc. 2019, 141, 6254.

[17]

Y. Jia, F. Zhang, Q. Liu, J. Yang, J. Xian, Y. Sun, Y. Li, G. Li, Chin. Chem. Lett. 2022, 33, 1070.

[18]

P. Yu, R. Chen, Q. Zhang, S. Liang, M. Ni, W. Yang, Sci. Bull. 2018, 63, 213.

[19]

J. Liu, D. Wang, K. Huang, J. Dong, J. Liao, S. Dai, X. Tang, M. Yan, H. Gong, J. Liu, Z. Gong, R. Liu, C. Cui, G. Ye, X. Zou, H. Fei, ACS Nano 2021, 15, 18125.

[20]

H. R. Byon, J. Suntivich, Y. Shao-Horn, Chem. Mater. 2011, 23, 3421.

[21]

Y. Wang, L. Wang, H. Fu, Sci. China Mater. 2022, 65, 1701.

[22]

H. T. Chung, D. A. Cullen, D. Higgins, B. T. Sneed, E. F. Holby, K. L. More, P. Zelenay, Science 2017, 357, 479.

[23]

K. M. Zhao, S. Liu, Y. Y. Li, X. Wei, G. Ye, W. Zhu, Y. Su, J. Wang, H. Liu, Z. He, Z. Y. Zhou, S. G. Sun, Adv. Energy Mater. 2022, 12, 2103588.

[24]

M. H. Naveen, K. Shim, M. S. A. Hossain, J. H. Kim, Y. B. Shim, Adv. Energy Mater. 2017, 7, 1602002.

[25]

H. Yin, P. Yuan, B.-A. Lu, H. Xia, K. Guo, G. Yang, G. Qu, D. Xue, Y. Hu, J. Cheng, S. Mu, J.-N. Zhang, ACS Catal. 2021, 11, 12754.

[26]

J. Chen, S. K. Iyemperumal, T. Fenton, A. Carl, R. Grimm, G. Li, N. A. Deskins, ACS Catal. 2018, 8, 10464.

[27]

X. Li, C.-S. Cao, S.-F. Hung, Y.-R. Lu, W. Cai, A. I. Rykov, S. Miao, S. Xi, H. Yang, Z. Hu, J. Wang, J. Zhao, E. E. Alp, W. Xu, T.-S. Chan, H. Chen, Q. Xiong, H. Xiao, Y. Huang, J. Li, T. Zhang, B. Liu, Chem 2020, 6, 3440.

[28]

W. Liu, L. Zhang, X. Liu, X. Liu, X. Yang, S. Miao, W. Wang, A. Wang, T. Zhang, J. Am. Chem. Soc. 2017, 139, 10790.

[29]

C. Shao, L. Wu, H. Zhang, Q. Jiang, X. Xu, Y. Wang, S. Zhuang, H. Chu, L. Sun, J. Ye, B. Li, X. Wang, Adv. Funct. Mater. 2021, 31, 2100833.

[30]

M. Wang, W. Yang, X. Li, Y. Xu, L. Zheng, C. Su, B. Liu, ACS Energy Lett. 2021, 6, 379.

[31]

A. Zitolo, V. Goellner, V. Armel, M.-T. Sougrati, T. Mineva, L. Stievano, E. Fonda, F. Jaouen, Nat. Mater. 2015, 14, 937.

[32]

J. Li, M. T. Sougrati, A. Zitolo, J. M. Ablett, I. C. Oğuz, T. Mineva, I. Matanovic, P. Atanassov, Y. Huang, I. Zenyuk, A. Di Cicco, K. Kumar, L. Dubau, F. Maillard, G. Dražić, F. Jaouen, Nat. Catal. 2020, 4, 10.

[33]

G.-H. Wang, K. Chen, J. Engelhardt, H. Tüysüz, H.-J. Bongard, W. Schmidt, F. Schüth, Chem. Mater. 2018, 30, 2483.

[34]

G. H. Wang, J. Hilgert, F. H. Richter, F. Wang, H. J. Bongard, B. Spliethoff, C. Weidenthaler, F. Schuth, Nat. Mater. 2014, 13, 293.

[35]

Y. Zhou, Y. Yu, D. Ma, A. C. Foucher, L. Xiong, J. Zhang, E. A. Stach, Q. Yue, Y. Kang, ACS Catal. 2020, 11, 74.

[36]

Q. Yu, S. Lian, J. Li, R. Yu, S. Xi, J. Wu, D. Zhao, L. Mai, L. Zhou, J. Mater. Chem. A 2020, 8, 6076.

[37]

C. He, Z.-Y. Wu, L. Zhao, M. Ming, Y. Zhang, Y. Yi, J.-S. Hu, ACS Catal. 2019, 9, 7311.

[38]

Q. Wang, Y. Yang, F. Sun, G. Chen, J. Wang, L. Peng, W. T. Chen, L. Shang, J. Zhao, D. Sun-Waterhouse, T. Zhang, G. I. N. Waterhouse, Adv. Energy Mater. 2021, 11, 2100219.

[39]

L. Yu, Y. Li, Y. Ruan, Angew. Chem. Int. Ed. 2021, 60, 25296.

[40]

B. Ji, J. Gou, Y. Zheng, X. Zhou, P. Kidkhunthod, Y. Wang, Q. Tang, Y. Tang, Adv. Mater. 2022, 34, 2202714.

[41]

J. Rittle, M. T. Green, Science 2010, 330, 933.

[42]

S. P. de Visser, F. Ogliaro, S. Shaik, Chem. Commun. 2001, 2001, 2322.

[43]

G. Ren, S. Chen, J. Zhang, N. Zhang, C. Jiao, H. Qiu, C. Liu, H.-L. Wang, J. Mater. Chem. A 2021, 9, 5751.

[44]

Z. Liu, Y. Du, P. Zhang, Z. Zhuang, D. Wang, Matter 2021, 4, 3161.

[45]

Y. Zhao, R. Nakamura, K. Kamiya, S. Nakanishi, K. Hashimoto, Nat. Commun. 2013, 4, 2390.

[46]

Y. Jia, L. Zhang, A. Du, G. Gao, J. Chen, X. Yan, C. L. Brown, X. Yao, Adv. Mater. 2016, 28, 9532.

[47]

W. Cheng, P. Yuan, Z. Lv, Y. Guo, Y. Qiao, X. Xue, X. Liu, W. Bai, K. Wang, Q. Xu, J. Zhang, Appl. Catal. B-Environ. 2020, 260, 118198.

[48]

R. Cao, R. Thapa, H. Kim, X. Xu, M. Gyu Kim, Q. Li, N. Park, M. Liu, J. Cho, Nat. Commun. 2013, 4, 2076.

[49]

Y. Qiao, P. Yuan, Y. Hu, J. Zhang, S. Mu, J. Zhou, H. Li, H. Xia, J. He, Q. Xu, Adv. Mater. 2018, 30, 1804504.

[50]

Y. Liu, J. Zhang, S. Wang, K. Wang, Z. Chen, Q. Xu, New J. Chem. 2014, 38, 4045.

[51]

Z. Li, Z. Zhuang, F. Lv, H. Zhu, L. Zhou, M. Luo, J. Zhu, Z. Lang, S. Feng, W. Chen, L. Mai, S. Guo, Adv. Mater. 2018, 30, 1803220.

[52]

J. Meng, J. Li, J. Liu, X. Zhang, G. Jiang, L. Ma, Z.-Y. Hu, S. Xi, Y. Zhao, M. Yan, P. Wang, X. Liu, Q. Li, J. Z. Liu, T. Wu, L. Mai, ACS Central Sci. 2020, 6, 1431.

[53]

Y. Ma, J. Li, X. Liao, W. Luo, W. Huang, J. Meng, Q. Chen, S. Xi, R. Yu, Y. Zhao, L. Zhou, L. Mai, Adv. Funct. Mater. 2020, 30, 2005000.

[54]

U. I. Kramm, L. Ni, S. Wagner, Adv. Mater. 2019, 31, 1805623.

[55]

J. Li, S. Ghoshal, W. Liang, M.-T. Sougrati, F. Jaouen, B. Halevi, S. McKinney, G. McCool, C. Ma, X. Yuan, Z.-F. Ma, S. Mukerjee, Q. Jia, Energy Environ. Sci. 2016, 9, 2418.

[56]

E. Luo, Y. Chu, J. Liu, Z. Shi, S. Zhu, L. Gong, J. Ge, C. H. Choi, C. Liu, W. Xing, Energy Environ. Sci. 2021, 14, 2158.

[57]

Z. Chen, H. Niu, J. Ding, H. Liu, P. H. Chen, Y. H. Lu, Y. R. Lu, W. Zuo, L. Han, Y. Guo, S. F. Hung, Y. Zhai, Angew. Chem. Int. Ed. 2021, 60, 25404.

[58]

Y. Lin, K. Liu, K. Chen, Y. Xu, H. Li, J. Hu, Y.-R. Lu, T.-S. Chan, X. Qiu, J. Fu, M. Liu, ACS Catal. 2021, 11, 6304.

[59]

K. Chen, K. Liu, P. An, H. Li, Y. Lin, J. Hu, C. Jia, J. Fu, H. Li, H. Liu, Z. Lin, W. Li, J. Li, Y. R. Lu, T. S. Chan, N. Zhang, M. Liu, Nat. Commun. 2020, 11, 4173.

[60]

W. J. Jiang, L. Gu, L. Li, Y. Zhang, X. Zhang, L. J. Zhang, J. Q. Wang, J. S. Hu, Z. Wei, L. J. Wan, J. Am. Chem. Soc. 2016, 138, 3570.

[61]

J. Liu, Z. Gong, C. Allen, W. Ge, H. Gong, J. Liao, J. Liu, K. Huang, M. Yan, R. Liu, G. He, J. Dong, G. Ye, H. Fei, Chem Catal. 2021, 1, 1291.

[62]

R. Lu, C. Quan, C. Zhang, Q. He, X. Liao, Z. Wang, Y. Zhao, Nano Res. 2022, 15, 6067.

[63]

D. Deng, L. Yu, X. Chen, G. Wang, L. Jin, X. Pan, J. Deng, G. Sun, X. Bao, Angew. Chem. Int. Ed. 2013, 52, 371.

[64]

W. Wang, Q. Jia, S. Mukerjee, S. Chen, ACS Catal. 2019, 9, 10126.

[65]

Z. Wang, X. Jin, C. Zhu, Y. Liu, H. Tan, R. Ku, Y. Zhang, L. Zhou, Z. Liu, S. J. Hwang, H. J. Fan, Adv. Mater. 2021, 33, 2104718.

Energy & Environmental Materials
Article number: e12560
Cite this article:
Li S, Xia L, Li J, et al. Tuning Structural and Electronic Configuration of FeN4 via External S for Enhanced Oxygen Reduction Reaction. Energy & Environmental Materials, 2024, 7(2): e12560. https://doi.org/10.1002/eem2.12560
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return