AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Outstanding Lithium Storage Performance of a Copper-Coordinated Metal-Covalent Organic Framework as Anode Material for Lithium-Ion Batteries

Derong LuoHuizi ZhaoFeng LiuHai XuXiaoyu DongBing DingHui Dou ( )Xiaogang Zhang ( )
Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Show Author Information

Abstract

Metal-covalent organic frameworks (MCOF) as a bridge between covalent organic framework (COF) and metal organic framework (MOF) possess the characteristics of open metal sites, structure stability, crystallinity, tunability as well as porosity, but still in its infancy. In this work, a covalent organic framework DT-COF with a keto-enamine structure synthesized from the condensation of 3,3′-dihydroxybiphenyl diamine (DHBD) and triformylphloroglucinol (TFP) was coordinated with Cu2+ by a simple post-modification method to a obtain a copper-coordinated metal-covalent organic framework of Cu-DT COF. The isomerization from a keto-enamine structure of DT-COF to a enol-imine structure of Cu-DT COF is induced due to the coordination interaction of Cu2+. The structure change of Cu-DT COF induces the change of the electron distribution in the Cu-DT COF, which greatly promotes the activation and deep Li-storage behavior of the COF skeleton. As anode material for lithium-ion batteries (LIBs), Cu-DT COF exhibits greatly improved electrochemical performance, retaining the specific capacities of 760 mAh g−1 after 200 cycles and 505 mAh g−1 after 500 cycles at a current density of 0.5 A g−1. The preliminary lithium storage mechanism studies indicate that Cu2+ is also involved in the lithium storage process. A possible mechanism for Cu-DT COF was proposed on the basis of FT-IR, XPS, EPR characterization and electrochemical analysis. This work enlightens a novel strategy to improve the energy storage performance of COF and promotes the application of COF and MCOF in LIBs.

Electronic Supplementary Material

Download File(s)
eem-7-5-e12732_ESM.docx (4 MB)

References

[1]

M. Armand, J. M. Tarascon, Nature 2008, 451, 652.

[2]

M. Winter, B. Barnett, K. Xu, Chem. Rev. 2018, 118, 11433.

[3]

J. Xie, J. Li, X. Li, H. Lei, W. Zhuo, X. Li, G. Hong, K. N. Hui, L. Pan, W. Mai, CCS Chem. 2021, 3, 89.

[4]

J. Li, N. Zhuang, J. Xie, X. Li, W. Zhuo, H. Wang, J. B. Na, X. Li, Y. Yamauchi, W. Mai, Adv. Energy Mater. 2020, 10, 1903455.

[5]

X. Li, J. Li, L. Ma, C. Yu, Z. Ji, L. Pan, W. Mai, Energy Environ. Mater. 2022, 5, 458.

[6]

N. Yabuuchi, K. Yoshii, S. T. Myung, I. Nakai, S. Komaba, J. Am. Chem. Soc. 2011, 133, 4404.

[7]

T. B. Schon, B. T. McAllister, P. F. Li, D. S. Seferos, Chem. Soc. Rev. 2016, 45, 6345.

[8]

L. M. Zhou, S. Jo, M. Park, L. Fang, K. Zhang, Y. Fan, Z. Hao, Y. M. Kang, Adv. Energy Mater. 2021, 11, 2003054.

[9]

Z. Xiao, G. Xiang, Q. Zhang, Y. Wang, Y. Yang, Energy Environ. Mater. 2023, 6, e12399.

[10]

M. R. Raj, J. Yun, D. K. Son, G. Lee, Energy Environ. Mater. 2023, 6, e12553.

[11]

A. P. Cote, A. I. Benin, N. W. Ockwig, M. O’Keeffe, A. J. Matzger, O. M. Yaghi, Science 2005, 310, 1166.

[12]

H. M. El Kaderi, J. R. Hunt, J. L. Mendoza Cortés, A. P. Côté, R. E. Taylor, M. O’Keeffe, O. M. Yaghi, Science 2007, 316, 268.

[13]

L. Cusin, H. J. Peng, A. Ciesielski, P. Samorì, Angew. Chem. Int. Ed. 2021, 133, 14356.

[14]

D. R. Luo, J. Zhang, H. Z. Zhao, H. Xu, X. Y. Dong, L. Y. Wu, B. Ding, H. Dou, X. G. Zhang, Chem. Commun. 2023, 59, 6853.

[15]

H. Wang, Y. Yang, X. Z. Yuan, W. L. Teo, Y. Wu, L. Tang, Y. L. Zhao, Mater. Today 2022, 53, 106.

[16]

S. Kandambeth, K. Dey, R. Banerjee, J. Am. Chem. Soc. 1807, 2018, 141.

[17]

R. R. Liang, S. Y. Jiang, A. Ru-Han, X. Zhao, Chem. Soc. Rev. 2020, 49, 3920.

[18]

J. Li, X. c. Jing, Q. q. Li, S. w. Li, X. Gao, X. Feng, B. Wang, Chem. Soc. Rev. 2020, 49, 3565.

[19]

M. Cui, H. Zhao, Y. Qin, S. Zhang, R. Zhao, M. Zhang, W. Yu, G. Gao, X. Hu, Y. Su, K. Xi, S. Ding, Energy Environ. Mater. 2023, DOI: 10.1002/eem2.12659.

[20]

Q. An, H.-E. Wang, G. Zhao, S. Wang, L. Xu, H. Wang, Y. Fu, H. Guo, Energy Environ. Mater. 2023, 6, e12345.

[21]

X. J. Zhao, P. Pachfule, A. Thomas, Chem. Soc. Rev. 2021, 50, 6871.

[22]

L. J. Kong, M. Liu, H. Huang, Y. H. Xu, X. H. Bu, Adv. Energy Mater. 2021, 12, 2100172.

[23]

D. Y. Zhu, G. Xu, M. Barnes, Y. Li, C. P. Tseng, Z. Zhang, J. J. Zhang, Y. Y. Zhu, S. Khalil, M. M. Rahman, Adv. Funct. Mater. 2021, 31, 2100505.

[24]

X. B. Yang, C. Lin, D. D. Han, G. Li, C. Huang, J. Liu, X. L. Wu, L. P. Zhai, L. W. Mi, J. Mater. Chem. A 2022, 10, 3989.

[25]

Z. D. Lei, Q. S. Yang, Y. Xu, S. Y. Guo, W. W. Sun, H. Liu, L. P. Lv, Y. Zhang, Y. Wang, Nat. Commun. 2018, DOI: 10.1038/s41467-018-02889-7.

[26]

Z. Q. Luo, L. J. Liu, J. X. Ning, K. X. Lei, Y. Lu, F. J. Li, J. Chen, Angew. Chem. Int. Ed. 2018, 57, 9443.

[27]

S. Haldar, K. Roy, R. Kushwaha, S. Ogale, R. Vaidhyanathan, Adv. Energy Mater. 2019, 9, 1902428.

[28]

G. F. Zhao, H. Li, Z. H. Gao, L. Xu, Z. Y. Mei, S. Cai, T. T. Liu, X. F. Yang, H. Guo, X. L. Sun, Adv. Funct. Mater. 2021, 31, 2101019.

[29]

J. L. Segura, S. Royuela, M. M. Ramos, Chem. Soc. Rev. 2019, 48, 3903.

[30]

Y. L. Zhao, X. H. Xu, C. Xu, D. Y. Meng, X. Q. Liang, J. K. Qiu, New J. Chem. 2022, 46, 11980.

[31]

R. Zhao, Z. B. Liang, R. Q. Zou, Q. Xu, Aust. Dent. J. 2018, 2, 2235.

[32]

Z. Y. Zhang, H. Yoshikawa, K. Awaga, J. Am. Chem. Soc. 2014, 136, 16112.

[33]

H. Xu, L. L. Zhao, X. M. Liu, Q. S. Huang, Y. Q. Wang, C. X. Hou, Y. Y. Hou, J. Wang, F. Dang, J. T. Zhang, Adv. Funct. Mater. 2020, 30, 2006188.

[34]

J. Q. Dong, X. Han, Y. Liu, H. Y. Li, Y. Cui, Angew. Chem. Int. Ed. 2020, 132, 13826.

[35]

W.-K. Han, Y. Liu, X. Yan, Z.-G. Gu, Mater. Chem. Front. 2023, 7, 2995.

[36]

Y. He, G. Liu, Z. Liu, J. Bi, Y. Yu, L. Li, ACS Energy Lett. 1857, 2023, 8.

[37]

Q. Zhang, S. Gao, Y. Guo, H. Wang, J. Wei, X. Su, H. Zhang, Z. Liu, J. Wang, Nat. Commun. 2023, 14, 1147.

[38]

T. He, Z. Zhao, R. Liu, X. Liu, B. Ni, Y. Wei, Y. Wu, W. Yuan, H. Peng, Z. Jiang, Y. Zhao, J. Am. Chem. Soc. 2023, 145, 6057.

[39]

J. J. Huang, X. Han, S. Yang, Y. Y. Cao, C. Yuan, Y. Liu, J. G. Wang, Y. Cui, J. Am. Chem. Soc. 2019, 141, 8996.

[40]

A. M. Kaczmarek, Y. Y. Liu, M. K. Kaczmarek, H. Liu, F. Artizzu, L. D. Carlos, P. Van Der Voort, Angew. Chem. Int. Ed. 1948, 2020, 132.

[41]

M. H. Wang, L. Zhu, S. Zhang, Y. Lou, S. R. Zhao, Q. Tan, L. H. He, M. Du, Sensors Actuators B Chem. 2021, 338, 129826.

[42]

S. C. Yao, X. R. Zhao, X. Y. Wan, X. Y. Wang, T. Huang, J. M. Zhang, L. L. Li, Mater. Horiz. 2021, 8, 3457.

[43]

S. Kandambeth, A. Mallick, B. Lukose, M. V. Mane, T. Heine, R. Banerjee, J. Am. Chem. Soc. 2012, 134, 19524.

[44]

J. Park, A. C. Hinckley, Z. H. Huang, D. W. Feng, A. A. Yakovenko, M. Lee, S. C. Chen, X. D. Zou, Z. N. Bao, J. Am. Chem. Soc. 2018, 140, 14533.

[45]

Q. Jiang, P. X. Xiong, J. J. Liu, Z. Xie, Q. C. Wang, X. Q. Yang, E. Y. Hu, Y. Cao, J. Sun, Y. Y. Xu, Angew. Chem. Int. Ed. 2020, 59, 5273.

[46]

L. H. Li, X. L. Feng, X. H. Cui, Y. X. Ma, S. Y. Ding, W. Wang, J. Am. Chem. Soc. 2017, 139, 6042.

[47]

S. Haldar, D. Kaleeswaran, D. Rase, K. Roy, S. Ogale, R. Vaidhyanathan, Nanoscale Horiz. 2020, 5, 1264.

[48]

T. Duguet, A. Gavrielides, J. Esvan, T. Mineva, C. Lacaze Dufaure, J. Phys. Chem. C 2019, 123, 30917.

[49]

C. Furlani, G. Polzonetti, C. Preti, G. Tosi, Inorg. Chim. Acta 1983, 73, 105.

[50]

B. Gao, B. Tan, Y. Liu, C. W. Wang, Y. G. He, Y. Y. Huang, Surf. Interface Anal. 2019, 51, 566.

[51]

S. Gu, S. F. Wu, L. J. Cao, M. C. Li, N. Qin, J. Zhu, Z. Q. Wang, Y. Z. Li, Z. Q. Li, J. J. Chen, J. Am. Chem. Soc. 2019, 141, 9623.

[52]

H. Zhao, H. Chen, C. Y. Xu, Z. H. Li, B. Ding, H. Dou, X. G. Zhang, ACS App. Energy Mater. 2021, 4, 11377.

[53]

T. Li, W. D. Zhang, Y. Liu, Y. X. Li, C. Cheng, H. Y. Zhu, X. Y. Yan, Z. J. Li, Z. G. Gu, J. Mater. Chem. A 2019, 7, 19676.

[54]

M. H. Wang, C. B. Wang, J. M. Liu, F. L. Rong, L. H. He, Y. F. Lou, Z. H. Zhang, M. Du, ACS Sustain. Chem. Eng. 2021, 9, 5872.

[55]

A. M. Kaczmarek, H. S. Jena, C. Krishnaraj, H. Rijckaert, S. K. Veerapandian, A. Meijerink, P. Van Der Voort, Angew. Chem. Int. Ed. 2021, 60, 3727.

[56]

X. Y. Xu, Z. N. Zhang, R. Xiong, G. D. Lu, J. Zhang, W. Ning, S. Z. Hu, Q. L. Feng, S. L. Qiao, Nano-Micro Lett. 2023, 15, 25.

[57]

X. H. Rui, N. Ding, J. Liu, C. Li, C. H. Chen, Electrochim. Acta 2010, 55, 2384.

[58]

Q. Ni, Y. Bai, Y. Li, L. Ling, L. Li, G. Chen, Z. Wang, H. Ren, F. Wu, C. Wu, Small 2018, 14, 1702864.

[59]

D. W. Feng, T. Lei, M. R. Lukatskaya, J. Park, Z. H. Huang, M. Lee, L. Shaw, S. C. Chen, A. A. Yakovenko, A. Kulkarni, J. P. Xiao, K. Fredrickson, J. B. Tok, X. D. Zou, Y. Cui, Z. A. Bao, Nat. Energy 2018, 3, 30.

[60]

X. Xu, S. Zhang, K. Xu, H. Chen, X. Fan, N. Huang, J. Am. Chem. Soc. 2023, 145, 1022.

[61]

J. Yan, Y. Cui, M. Xie, G. Z. Yang, D. S. Bin, D. Li, Angew. Chem. Int. Ed. 2021, 133, 24672.

Energy & Environmental Materials
Article number: e12732
Cite this article:
Luo D, Zhao H, Liu F, et al. Outstanding Lithium Storage Performance of a Copper-Coordinated Metal-Covalent Organic Framework as Anode Material for Lithium-Ion Batteries. Energy & Environmental Materials, 2024, 7(5): e12732. https://doi.org/10.1002/eem2.12732

21

Views

0

Downloads

4

Crossref

4

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 28 September 2023
Revised: 11 January 2024
Published: 24 January 2024
© 2024 The Authors.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return