Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Copper (Cuprum) is an essential trace metal indispensable for the function of numerous enzymatic molecules implicated in cellular metabolism. Emerging evidence has demonstrated the role of copper in angiogenesis and cellular signaling. Moreover, raised copper levels have been detected in hepatocellular carcinoma and other cancers. An inherited or acquired copper imbalance, including inadequately low or excessively high copper levels, as well as inappropriate copper distribution in the body, is implicated in a number of diseases. In addition, a recent groundbreaking study identified a copper‐induced type of programmed cell death named cuprotosis, the mechanism of which greatly deferred from that of other known cell death modes. The first part provides an overview of the regulation of copper homeostasis and discusses the underlying mechanisms of cuprotosis. In the second part, the authors focus on the functions of copper in liver diseases and other metabolic disorders, before discussing how this knowledge could contribute to the development of effective targets to treat such diseases.
Christgen S, Tweedell RE, Kanneganti TD. Programming inflammatory cell death for therapy. Pharmacol Ther. 2022;232:108010. https://doi.org/10.1016/j.pharmthera.2021.108010
Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 2022;375(6586):1254–61. https://doi.org/10.1126/science.abf0529
Kuo YM, Zhou B, Cosco D, Gitschier J. The copper transporter CTR1 provides an essential function in mammalian embryonic development. Proc Natl Acad Sci USA. 2001;98(12):6836–41. https://doi.org/10.1073/pnas.111057298
Zhang H, Ostrowski R, Jiang D, Zhao Q, Liang Y, Che X, et al. Hepcidin promoted ferroptosis through iron metabolism which is associated with DMT1 signaling activation in early brain injury following subarachnoid hemorrhage. Oxid Med Cell Longev. 2021;2021:9800794. https://doi.org/10.1155/2021/9800794
Vila CM, Marchi G, Barque A, Esteban‐Jurado C, Marchetto A, Giorgetti A, et al. Genetic and clinical heterogeneity in thirteen new cases with aceruloplasminemia. Atypical anemia as a clue for an early diagnosis. Int J Mol Sci. 2020;21(7):2374. https://doi.org/10.3390/ijms21072374
Kirk FT, Munk DE, Ek J, Birk ML, Bendixen TM, Hvid DE, et al. Case report: Huppke‐Brendel syndrome in an adult, mistaken for and treated as Wilson disease for 25 years. Front Neurol. 2022;13:957794. https://doi.org/10.3389/fneur.2022.957794
Blockhuys S, Zhang X, Wittung‐Stafshede P. Single‐cell tracking demonstrates copper chaperone ATOX1 to be required for breast cancer cell migration. Proc Natl Acad Sci USA. 2020;117(4):2014–9. https://doi.org/10.1073/pnas.1910722117
Li L, Chen M, Liu W, Tai P, Liu X, Liu JX. Zebrafish cox17 modulates primitive erythropoiesis via regulation of mitochondrial metabolism to facilitate hypoxia tolerance. FASEB J. 2022;36(11):e22596. https://doi.org/10.1096/fj.202200829R
Son M, Puttaparthi K, Kawamata H, Rajendran B, Boyer PJ, Manfredi G, et al. Overexpression of CCS in G93A‐SOD1 mice leads to accelerated neurological deficits with severe mitochondrial pathology. Proc Natl Acad Sci USA. 2007;104(14):6072–7. https://doi.org/10.1073/pnas.0610923104
Moller LB, Mogensen M, Horn N. Molecular diagnosis of Menkes disease: genotype‐phenotype correlation. Biochimie. 2009;91(10):1273–7. https://doi.org/10.1016/j.biochi.2009.05.011
Compston A. Progressive lenticular degeneration: a familial nervous disease associated with cirrhosis of the liver, by S. A. Kinnier Wilson, (from the National Hospital, and the Laboratory of the National Hospital, Queen Square, London) Brain 1912: 34; 295‐509. Brain. 2009;132(Pt 8):1997–2001. https://doi.org/10.1093/brain/awp193
Chambers A, Krewski D, Birkett N, Plunkett L, Hertzberg R, Danzeisen R, et al. An exposure‐response curve for copper excess and deficiency. J Toxicol Environ Health B Crit Rev. 2010;13(7‐8):546–78. https://doi.org/10.1080/10937404.2010.538657
Prohaska JR. Impact of copper deficiency in humans. Ann N Y Acad Sci. 2014;1314:1–5. https://doi.org/10.1111/nyas.12354
Zhang F, Tao Y, Zhang Z, Guo X, An P, Shen Y, et al. Metalloreductase Steap3 coordinates the regulation of iron homeostasis and inflammatory responses. Haematologica. 2012;97(12):1826–35. https://doi.org/10.3324/haematol.2012.063974
Liao Y, Zhao J, Bulek K, Tang F, Chen X, Cai G, et al. Inflammation mobilizes copper metabolism to promote colon tumorigenesis via an IL‐17‐STEAP4‐XIAP axis. Nat Commun. 2020;11(1):900. https://doi.org/10.1038/s41467-020-14698-y
Galler T, Lebrun V, Raibaut L, Faller P, Wezynfeld NE. How trimerization of CTR1 N‐terminal model peptides tunes Cu‐binding and redox‐chemistry. Chem Commun (Camb). 2020;56(81):12194–7. https://doi.org/10.1039/d0cc04693k
Nevitt T, Ohrvik H, Thiele DJ. Charting the travels of copper in eukaryotes from yeast to mammals. Biochim Biophys Acta. 2012;1823(9):1580–93. https://doi.org/10.1016/j.bbamcr.2012.02.011
Liang ZD, Tsai WB, Lee MY, Savaraj N, Kuo MT. Specificity protein 1 (sp1) oscillation is involved in copper homeostasis maintenance by regulating human high‐affinity copper transporter 1 expression. Mol Pharmacol. 2012;81(3):455–64. https://doi.org/10.1124/mol.111.076422
Lee J, Prohaska JR, Dagenais SL, Glover TW, Thiele DJ. Isolation of a murine copper transporter gene, tissue specific expression and functional complementation of a yeast copper transport mutant. Gene. 2000;254(1‐2):87–96. https://doi.org/10.1016/s0378-1119(00)00287-0
Pierson H, Yang H, Lutsenko S. Copper transport and disease: what can we learn from organoids? Annu Rev Nutr. 2019;39(1):75–94. https://doi.org/10.1146/annurev-nutr-082018-124242
Ge EJ, Bush AI, Casini A, Cobine PA, Cross JR, Denicola GM, et al. Connecting copper and cancer: from transition metal signalling to metalloplasia. Nat Rev Cancer. 2022;22(2):102–3. https://doi.org/10.1038/s41568-021-00417-2
Linder MC. Ceruloplasmin and other copper binding components of blood plasma and their functions: an update. Metallomics. 2016;8(9):887–905. https://doi.org/10.1039/c6mt00103c
Petruzzelli R, Polishchuk RS. Activity and trafficking of copper‐transporting ATPases in tumor development and defense against platinum‐based drugs. Cells. 2019;8(9):1080. https://doi.org/10.3390/cells8091080
Oliveri V. Selective targeting of cancer cells by copper ionophores: an overview. Front Mol Biosci. 2022;9:841814. https://doi.org/10.3389/fmolb.2022.841814
Wallace DF, Dooley JS. ATP7B variant penetrance explains differences between genetic and clinical prevalence estimates for Wilson disease. Hum Genet. 2020;139(8):1065–75. https://doi.org/10.1007/s00439-020-02161-3
Zischka H, Lichtmannegger J, Schmitt S, Jagemann N, Schulz S, Wartini D, et al. Liver mitochondrial membrane crosslinking and destruction in a rat model of Wilson disease. J Clin Invest. 2011;121(4):1508–18. https://doi.org/10.1172/JCI45401
Przybylkowski A, Gromadzka G, Wawer A, Grygorowicz T, Cybulska A, Czlonkowska A. Intestinal expression of metal transporters in Wilson's disease. Biometals. 2013;26(6):925–34. https://doi.org/10.1007/s10534-013-9668-5
Kumagi T, Horiike N, Abe M, Kurose K, Iuchi H, Masumoto T, et al. Small hepatocellular carcinoma associated with Wilson's disease. Intern Med. 2005;44(5):439–3. https://doi.org/10.2169/internalmedicine.44.439
Pfeiffenberger J, Mogler C, Gotthardt DN, Schulze‐Bergkamen H, Litwin T, Reuner U, et al. Hepatobiliary malignancies in Wilson disease. Liver Int. 2015;35(5):1615–22. https://doi.org/10.1111/liv.12727
Rosencrantz RA, Lecompte L, Yusuf Y. Beneath the copper‐pediatric Wilson's disease cirrhosis and hepatocellular carcinoma: a case report with literature review. Semin Liver Dis. 2015;35(4):434–8. https://doi.org/10.1055/s-0035-1567828
van Meer S, de Man RA, van den Berg AP, Houwen RH, Linn FH, van Oijen MG, et al. No increased risk of hepatocellular carcinoma in cirrhosis due to Wilson disease during long‐term follow‐up. J Gastroenterol Hepatol. 2015;30(3):535–9. https://doi.org/10.1111/jgh.12716
Shribman S, Poujois A, Bandmann O, Czlonkowska A, Warner TT. Wilson's disease: update on pathogenesis, biomarkers and treatments. J Neurol Neurosurg Psychiatry. 2021;92(10):1053–61. https://doi.org/10.1136/jnnp-2021-326123
Ryan A, Nevitt SJ, Tuohy O, Cook P. Biomarkers for diagnosis of Wilson's disease. Cochrane Database Syst Rev. 2019;2019(11):CD012267. https://doi.org/10.1002/14651858.CD012267.pub2
Woimant F, Djebrani‐Oussedik N, Poujois A. New tools for Wilson's disease diagnosis: exchangeable copper fraction. Ann Transl Med. 2019;7(Suppl 2):S70. https://doi.org/10.21037/atm.2019.03.02
Collins CJ, Yi F, Dayuha R, Duong P, Horslen S, Camarata M, et al. Direct measurement of ATP7B peptides is highly effective in the diagnosis of Wilson disease. Gastroenterology. 2021;160(7):2367–82. https://doi.org/10.1053/j.gastro.2021.02.052
Polishchuk EV, Concilli M, Iacobacci S, Chesi G, Pastore N, Piccolo P, et al. Wilson disease protein ATP7B utilizes lysosomal exocytosis to maintain copper homeostasis. Dev Cell. 2014;29(6):686–700. https://doi.org/10.1016/j.devcel.2014.04.033
Goldstein DS, Holmes CS, Kaler SG. Relative efficiencies of plasma catechol levels and ratios for neonatal diagnosis of Menkes disease. Neurochem Res. 2009;34(8):1464–8. https://doi.org/10.1007/s11064-009-9933-8
Yu L, Liou IW, Biggins SW, Yeh M, Jalikis F, Chan LN, et al. Copper deficiency in liver diseases: a case series and pathophysiological considerations. Hepatol Commun. 2019;3(8):1159–65. https://doi.org/10.1002/hep4.1393
Bost M, Houdart S, Oberli M, Kalonji E, Huneau JF, Margaritis I. Dietary copper and human health: current evidence and unresolved issues. J Trace Elem Med Biol. 2016;35:107–5. https://doi.org/10.1016/j.jtemb.2016.02.006
Fuqua BK, Lu Y, Frazer DM, Darshan D, Wilkins SJ, Dunn L, et al. Severe iron metabolism defects in mice with double knockout of the multicopper ferroxidases hephaestin and ceruloplasmin. Cell Mol Gastroenterol Hepatol. 2018;6(4):405–27. https://doi.org/10.1016/j.jcmgh.2018.06.006
Nose Y, Kim BE, Thiele DJ. Ctr1 drives intestinal copper absorption and is essential for growth, iron metabolism, and neonatal cardiac function. Cell Metabol. 2006;4(3):235–44. https://doi.org/10.1016/j.cmet.2006.08.009
Aigner E, Theurl I, Haufe H, Seifert M, Hohla F, Scharinger L, et al. Copper availability contributes to iron perturbations in human nonalcoholic fatty liver disease. Gastroenterology. 2008;135(2):680–8. https://doi.org/10.1053/j.gastro.2008.04.007
Maras JS, Maiwall R, Harsha HC, Das S, Hussain MS, Kumar C, et al. Dysregulated iron homeostasis is strongly associated with multiorgan failure and early mortality in acute‐on‐chronic liver failure. Hepatology. 2015;61(4):1306–20. https://doi.org/10.1002/hep.27636
Yu L, Yousuf S, Yousuf S, Yeh J, Biggins SW, Morishima C, et al. Copper deficiency is an independent risk factor for mortality in patients with advanced liver disease. Hepatol Commun. 2023;7(3):e76. https://doi.org/10.1097/HC9.0000000000000076
Myint ZW, Oo TH, Thein KZ, Tun AM, Saeed H. Copper deficiency anemia: review article. Ann Hematol. 2018;97(9):1527–34. https://doi.org/10.1007/s00277-018-3407-5
Choi EH, Strum W. Hypocupremia‐related myeloneuropathy following gastrojejunal bypass surgery. Ann Nutr Metab. 2010;57(3‐4):190–2. https://doi.org/10.1159/000321519
Btaiche IF, Yeh AY, Wu IJ, Khalidi N. Neurologic dysfunction and pancytopenia secondary to acquired copper deficiency following duodenal switch: case report and review of the literature. Nutr Clin Pract. 2011;26(5):583–92. https://doi.org/10.1177/0884533611416127
Vairo F, Chwal BC, Perini S, Ferreira M, de Freitas LA, Saute J. A systematic review and evidence‐based guideline for diagnosis and treatment of Menkes disease. Mol Genet Metabol. 2019;126(1):6–13. https://doi.org/10.1016/j.ymgme.2018.12.005
Yu Z, Zhou R, Zhao Y, Pan Y, Liang H, Zhang JS, et al. Blockage of SLC31A1‐dependent copper absorption increases pancreatic cancer cell autophagy to resist cell death. Cell Prolif. 2019;52(2):e12568. https://doi.org/10.1111/cpr.12568
Ishida S, Andreux P, Poitry‐Yamate C, Auwerx J, Hanahan D. Bioavailable copper modulates oxidative phosphorylation and growth of tumors. Proc Natl Acad Sci USA. 2013;110(48):19507–12. https://doi.org/10.1073/pnas.1318431110
Brady DC, Crowe MS, Turski ML, Hobbs GA, Yao X, Chaikuad A, et al. Copper is required for oncogenic BRAF signalling and tumorigenesis. Nature. 2014;509(7501):492–6. https://doi.org/10.1038/nature13180
Turski ML, Brady DC, Kim HJ, Kim BE, Nose Y, Counter CM, et al. A novel role for copper in Ras/mitogen‐activated protein kinase signaling. Mol Cell Biol. 2012;32(7):1284–95. https://doi.org/10.1128/MCB.05722-11
Tsang T, Posimo JM, Gudiel AA, Cicchini M, Feldser DM, Brady DC. Copper is an essential regulator of the autophagic kinases ULK1/2 to drive lung adenocarcinoma. Nat Cell Biol. 2020;22(4):412–24. https://doi.org/10.1038/s41556-020-0481-4
Gerard C, Bordeleau LJ, Barralet J, Doillon CJ. The stimulation of angiogenesis and collagen deposition by copper. Biomaterials. 2010;31(5):824–31. https://doi.org/10.1016/j.biomaterials.2009.10.009
Ash D, Sudhahar V, Youn SW, Okur MN, Das A, O'Bryan JP, et al. The P‐type ATPase transporter ATP7A promotes angiogenesis by limiting autophagic degradation of VEGFR2. Nat Commun. 2021;12(1):3091. https://doi.org/10.1038/s41467-021-23408-1
Das A, Ash D, Fouda AY, Sudhahar V, Kim YM, Hou Y, et al. Cysteine oxidation of copper transporter CTR1 drives VEGFR2 signalling and angiogenesis. Nat Cell Biol. 2022;24(1):35–50. https://doi.org/10.1038/s41556-021-00822-7
Tabbi G, Cucci LM, Pinzino C, Munzone A, Marzo T, Pizzanelli S, et al. Peptides derived from angiogenin regulate cellular copper uptake. Int J Mol Sci. 2021;22(17):6530. https://doi.org/10.3390/ijms22179530
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660
Fang AP, Chen PY, Wang XY, Liu ZY, Zhang DM, Luo Y, et al. Serum copper and zinc levels at diagnosis and hepatocellular carcinoma survival in the Guangdong Liver Cancer Cohort. Int J Cancer. 2019;144(11):2823–32. https://doi.org/10.1002/ijc.31991
Ebara M, Fukuda H, Hatano R, Yoshikawa M, Sugiura N, Saisho H, et al. Metal contents in the liver of patients with chronic liver disease caused by hepatitis c virus. Reference to hepatocellular carcinoma. Oncology. 2003;65(4):323–0. https://doi.org/10.1159/000074645
Balter V, Nogueira DCA, Bondanese VP, Jaouen K, Lamboux A, Sangrajrang S, et al. Natural variations of copper and sulfur stable isotopes in blood of hepatocellular carcinoma patients. Proc Natl Acad Sci USA. 2015;112(4):982–5. https://doi.org/10.1073/pnas.1415151112
Davis CI, Gu X, Kiefer RM, Ralle M, Gade TP, Brady DC. Altered copper homeostasis underlies sensitivity of hepatocellular carcinoma to copper chelation. Metallomics. 2020;12(12):1995–2008. https://doi.org/10.1039/d0mt00156b
Hay N. Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat Rev Cancer. 2016;16(10):635–49. https://doi.org/10.1038/nrc.2016.77
Zhao X, Chen J, Yin S, Shi J, Zheng M, He C, et al. The expression of cuproptosis‐related genes in hepatocellular carcinoma and their relationships with prognosis. Front Oncol. 2022;12:992468. https://doi.org/10.3389/fonc.2022.992468
Zhang Z, Zeng X, Wu Y, Liu Y, Zhang X, Song Z. Cuproptosis‐related risk score predicts prognosis and characterizes the tumor microenvironment in hepatocellular carcinoma. Front Immunol. 2022;13:925618. https://doi.org/10.3389/fimmu.2022.925618
Du J, Huang Z, Li Y, Ren X, Zhou C, Liu R, et al. Copper exerts cytotoxicity through inhibition of iron‐sulfur cluster biogenesis on ISCA1/ISCA2/ISCU assembly proteins. Free Radic Biol Med. 2023;204:359–73. https://doi.org/10.1016/j.freeradbiomed.2023.05.017
Vernis L, El BN, Baille D, Hatem E, Heneman A, Huang ME. Fe‐S clusters emerging as targets of therapeutic drugs. Oxid Med Cell Longev. 2017;2017:3647657. https://doi.org/10.1155/2017/3647657
European Association for Study of Liver. EASL clinical practice guidelines: Wilson's disease. J Hepatol. 2012;56(3):671–85. https://doi.org/10.1016/j.jhep.2011.11.007
Yoshii J, Yoshiji H, Kuriyama S, Ikenaka Y, Noguchi R, Okuda H, et al. The copper‐chelating agent, trientine, suppresses tumor development and angiogenesis in the murine hepatocellular carcinoma cells. Int J Cancer. 2001;94(6):768–3. https://doi.org/10.1002/ijc.1537
Yin JM, Sun LB, Zheng JS, Wang XX, Chen DX, Li N. Copper chelation by trientine dihydrochloride inhibits liver RFA‐induced inflammatory responses in vivo. Inflamm Res. 2016;65(12):1009–20. https://doi.org/10.1007/s00011-016-0986-2
Brewer GJ, Dick RD, Grover DK, Leclaire V, Tseng M, Wicha M, et al. Treatment of metastatic cancer with tetrathiomolybdate, an anticopper, antiangiogenic agent: phase I study. Clin Cancer Res. 2000;6(1):1–10.
Hancock JL, Kalimutho M, Straube J, Lim M, Gresshoff I, Saunus JM, et al. COMMD3 loss drives invasive breast cancer growth by modulating copper homeostasis. J Exp Clin Cancer Res. 2023;42(1):90. https://doi.org/10.1186/s13046-023-02663-8
Pan Q, Kleer CG, van Golen KL, Irani J, Bottema KM, Bias C, et al. Copper deficiency induced by tetrathiomolybdate suppresses tumor growth and angiogenesis. Cancer Res. 2002;62(17):4854–9.
Pass HI, Brewer GJ, Dick R, Carbone M, Merajver S. A phase II trial of tetrathiomolybdate after surgery for malignant mesothelioma: final results. Ann Thorac Surg. 2008;86(2):383–90. https://doi.org/10.1016/j.athoracsur.2008.03.016
Zhou J, Yu Q, Song J, Li S, Li XL, Kang BK, et al. Photothermally triggered copper payload release for cuproptosis‐promoted cancer synergistic therapy. Angew Chem Int Ed Engl. 2023;62(12):e202213922. https://doi.org/10.1002/anie.202213922
Li Y, Wang LH, Zhang HT, Wang YT, Liu S, Zhou WL, et al. Disulfiram combined with copper inhibits metastasis and epithelial‐mesenchymal transition in hepatocellular carcinoma through the NF‐kappaB and TGF‐beta pathways. J Cell Mol Med. 2018;22(1):439–51. https://doi.org/10.1111/jcmm.13334
Ren X, Li Y, Zhou Y, Hu W, Yang C, Jing Q, et al. Overcoming the compensatory elevation of NRF2 renders hepatocellular carcinoma cells more vulnerable to disulfiram/copper‐induced ferroptosis. Redox Biol. 2021;46:102122. https://doi.org/10.1016/j.redox.2021.102122
Zhou B, Guo L, Zhang B, Liu S, Zhang K, Yan J, et al. Disulfiram combined with copper induces immunosuppression via PD‐L1 stabilization in hepatocellular carcinoma. Am J Cancer Res. 2019;9(11):2442–55.
Staniszewska AD, Armenia J, King M, Michaloglou C, Reddy A, Singh M, et al. PARP inhibition is a modulator of anti‐tumor immune response in BRCA‐deficient tumors. OncoImmunology. 2022;11(1):2083755. https://doi.org/10.1080/2162402X.2022.2083755
Gao W, Huang Z, Duan J, Nice EC, Lin J, Huang C. Elesclomol induces copper‐dependent ferroptosis in colorectal cancer cells via degradation of ATP7A. Mol Oncol. 2021;15(12):3527–44. https://doi.org/10.1002/1878-0261.13079
Guthrie LM, Soma S, Yuan S, Silva A, Zulkifli M, Snavely TC, et al. Elesclomol alleviates Menkes pathology and mortality by escorting Cu to cuproenzymes in mice. Science. 2020;368(6491):620–5. https://doi.org/10.1126/science.aaz8899
This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.