AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home iLABMED Article
PDF (670.5 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Regulatory factors of ILC2 are therapeutic targets for lung inflammation

Lele CuiYajie Wang ( )
Department of Clinical Laboratory, Capital Medical University Affiliated Beijing Ditan Hospital, Beijing, China

[Correction added on 28 September 2024, after first online publication: Conflict of Interest Statement had been updated.]

Show Author Information

Graphical Abstract

ILC2s is a significant population of innate immune cells, which are activated by epithelial‐derived alarmins IL‐25, IL‐33 and TSLP to secrete type 2 cytokines, playing important role in the regulation of lung inflammation. This article reviews the various factors regulating ILC2s in lung inflammation, especially in allergic diseases. These studies prove that ILC2s play a key role in the treatment of lung inflammation. Targeting ILC2s and related regulatory factors is expected to become a new direction for the treatment of lung inflammation, and also provides new therapies for the development of more effective treatments for lung inflammation in the future.

Abstract

Type 2 innate lymphoid cells (ILC2s) are an important class of innate immune cells that play a key role in regulating immune responses, maintaining tissue homeostasis, and participating in immune responses induced by inflammatory diseases. In lung inflammation, ILC2s drive the inflammatory response by secreting type 2 cytokines, and have a significant role in tissue repair and the maintenance of barrier function by secreting IL‐9 and antimicrobial peptides. ILC2s activation and function are affected by various regulatory factors, including epithelial‐derived alarmins such as IL‐25, IL‐33, and thymic stromal lymphopoietin, neurotransmitters, metabolites and hormones. These regulatory factors affect the development and activation of ILC2s through signaling pathways under different pathological conditions. An in‐depth study of regulatory factors is expected to provide new targets and strategies for the treatment of lung inflammation.

References

[1]

Kubo M. Innate and adaptive type 2 immunity in lung allergic inflammation. Immunol Rev. 2017;278(1):162–72. https://doi.org/10.1111/imr.12557

[2]

Gurram RK, Zhu J. Orchestration between ILC2s and Th2 cells in shaping type 2 immune responses. Cell Mol Immunol. 2019;16(3):225–35. https://doi.org/10.1038/s41423-019-0210-8

[3]

Canani RB, Costanzo MD, Leone L, Pedata M, Meli R, Calignano A. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J Gastroenterol. 2011;17(12):1519–28. https://doi.org/10.3748/wjg.v17.i12.1519

[4]

Zheng C, Lu Z, Wu H, Cui L, Bi J, Wan X. Exogenous oxidative stress suppresses IL‐33‐driven proliferation programming in group 2 innate lymphoid cells. Int Immunopharm. 2021;95:107541. https://doi.org/10.1016/j.intimp.2021.107541

[5]

Darby IA, Hewitson TD. Hypoxia in tissue repair and fibrosis. Cell Tissue Res. 2016;365(3):553–62. https://doi.org/10.1007/s00441-016-2461-3

[6]

Lee JW, Ko J, Ju C, Eltzschig HK. Hypoxia signaling in human diseases and therapeutic targets. Exp Mol Med. 2019;51(6):1–13. https://doi.org/10.1038/s12276-019-0235-1

[7]

Takami D, Abe S, Shimba A, Asahi T, Cui G, Tani‐ichi S, et al. Lung group 2 innate lymphoid cells differentially depend on local IL‐7 for their distribution, activation, and maintenance in innate and adaptive immunity‐mediated airway inflammation. Int Immunol. 2023;35(11):513–30. https://doi.org/10.1093/intimm/dxad029

[8]

Artis D, Spits H. The biology of innate lymphoid cells. Nature. 2015;517(7534):293–301. https://doi.org/10.1038/nature14189

[9]

Mariotti FR, Quatrini L, Munari E, Vacca P, Moretta L. Innate lymphoid cells: expression of PD‐1 and other checkpoints in normal and pathological conditions. Front Immunol. 2019;10:910. https://doi.org/10.3389/fimmu.2019.00910

[10]

Vivier E, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, et al. Innate lymphoid cells: 10 Years on. Cell. 2018;174(5):1054–66. https://doi.org/10.1016/j.cell.2018.07.017

[11]

Duerr CU, Fritz JH. Regulation of group 2 innate lymphoid cells. Cytokine. 2016;87:1–8. https://doi.org/10.1016/j.cyto.2016.01.018

[12]

Camelo A, Rosignoli G, Ohne Y, Stewart RA, Overed‐Sayer C, Sleeman MA, et al. IL‐33, IL‐25, and TSLP induce a distinct phenotypic and activation profile in human type 2 innate lymphoid cells. Blood Adv. 2017;1(10):577–89. https://doi.org/10.1182/bloodadvances.2016002352

[13]

Matsuyama T, Salter BM, Emami Fard N, Machida K, Sehmi R. TNF superfamily and ILC2 activation in asthma. Biomolecules. 2024;14(3):294. https://doi.org/10.3390/biom14030294

[14]

Wallrapp A, Burkett PR, Riesenfeld SJ, Kim SJ, Christian E, Abdulnour REE, et al. Calcitonin gene‐related peptide negatively regulates alarmin‐driven type 2 innate lymphoid cell responses. Immunity. 2019;51(4):709–23.e6. https://doi.org/10.1016/j.immuni.2019.09.005

[15]

Nagashima H, Mahlakõiv T, Shih HY, Davis FP, Meylan F, Huang Y, et al. Neuropeptide CGRP limits group 2 innate lymphoid cell responses and constrains type 2 inflammation. Immunity. 2019;51(4):682–95.e6. https://doi.org/10.1016/j.immuni.2019.06.009

[16]

Xu H, Ding J, Porter CBM, Wallrapp A, Tabaka M, Ma S, et al. Transcriptional atlas of intestinal immune cells reveals that neuropeptide α‐CGRP modulates group 2 innate lymphoid cell responses. Immunity. 2019;51(4):696–708.e9. https://doi.org/10.1016/j.immuni.2019.09.004

[17]

Moriyama S, Brestoff JR, Flamar AL, Moeller JB, Klose CSN, Rankin LC, et al. β2‐adrenergic receptor‐mediated negative regulation of group 2 innate lymphoid cell responses. Science. 2018;359(6379):1056–61. https://doi.org/10.1126/science.aan4829

[18]

Schmidt FM, Lichtblau N, Minkwitz J, Chittka T, Thormann J, Kirkby KC, et al. Cytokine levels in depressed and non‐depressed subjects, and masking effects of obesity. J Psychiatr Res. 2014;55:29–34. https://doi.org/10.1016/j.jpsychires.2014.04.021

[19]

Dahl J, Ormstad H, Aass HCD, Malt UF, Bendz LT, Sandvik L, et al. The plasma levels of various cytokines are increased during ongoing depression and are reduced to normal levels after recovery. Psychoneuroendocrinology. 2014;45:77–86. https://doi.org/10.1016/j.psyneuen.2014.03.019

[20]

Wang Z, Yan C, Du Q, Huang Y, Li X, Zeng D, et al. HTR2A agonists play a therapeutic role by restricting ILC2 activation in papain‐induced lung inflammation. Cell Mol Immunol. 2023;20(4):404–18. https://doi.org/10.1038/s41423-023-00982-6

[21]

Cao Y, Li Y, Wang X, Liu S, Zhang Y, Liu G, et al. Dopamine inhibits group 2 innate lymphoid cell‐driven allergic lung inflammation by dampening mitochondrial activity. Immunity. 2023;56(2):320–35.e9. https://doi.org/10.1016/j.immuni.2022.12.017

[22]

You C, Zhang Y, Xu P, Huang S, Yin W, Eric Xu H, et al. Structural insights into the peptide selectivity and activation of human neuromedin U receptors. Nat Commun. 2022;13(1):2045. https://doi.org/10.1038/s41467-022-29683-w

[23]

Wallrapp A, Riesenfeld SJ, Burkett PR, Abdulnour RE, Nyman J, Dionne D, et al. The neuropeptide NMU amplifies ILC2‐driven allergic lung inflammation. Nature. 2017;549(7672):351–6. https://doi.org/10.1038/nature24029

[24]

Malhi GS, Mann JJ. Depression. Lancet. 2018;392(10161):2299–312. https://doi.org/10.1016/S0140-6736(18)31948-2

[25]

Berger M, Gray JA, Roth BL. The expanded biology of serotonin. Annu Rev Med. 2009;60(1):355–66. https://doi.org/10.1146/annurev.med.60.042307.110802

[26]

Dürk T, Duerschmied D, Müller T, Grimm M, Reuter S, Vieira RP, et al. Production of serotonin by tryptophan hydroxylase 1 and release via platelets contribute to allergic airway inflammation. Am J Respir Crit Care Med. 2013;187(5):476–85. https://doi.org/10.1164/rccm.201208-1440OC

[27]

Cosmi L, Liotta F, Maggi L, Annunziato F. Role of type 2 innate lymphoid cells in allergic diseases. Curr Allergy Asthma Rep. 2017;17(10):66. https://doi.org/10.1007/s11882-017-0735-9

[28]

Karagiannis F, Masouleh SK, Wunderling K, Surendar J, Schmitt V, Kazakov A, et al. Lipid‐droplet formation drives pathogenic group 2 innate lymphoid cells in airway inflammation. Immunity. 2020;52(4):620–34.e6. https://doi.org/10.1016/j.immuni.2020.03.003

[29]

Sato H, Taketomi Y, Ushida A, Isogai Y, Kojima T, Hirabayashi T, et al. The adipocyte‐inducible secreted phospholipases PLA2G5 and PLA2G2E play distinct roles in obesity. Cell Metabol. 2014;20(1):119–32. https://doi.org/10.1016/j.cmet.2014.05.002

[30]

Singer AG, Ghomashchi F, Le Calvez C, Bollinger J, Bezzine S, Rouault M, et al. Interfacial kinetic and binding properties of the complete set of human and mouse groups Ⅰ, Ⅱ, Ⅴ, Ⅹ, and Ⅻ secreted phospholipases A2. J Biol Chem. 2002;277(50):48535–49. https://doi.org/10.1074/jbc.M205855200

[31]

Giannattasio G, Fujioka D, Xing W, Katz HR, Boyce JA, Balestrieri B. Group V secretory phospholipase A2 reveals its role in house dust mite‐induced allergic pulmonary inflammation by regulation of dendritic cell function. J Immunol. 2010;185(7):4430–8. https://doi.org/10.4049/jimmunol.1001384

[32]

Ohta S, Imamura M, Xing W, Boyce JA, Balestrieri B. Group V secretory phospholipase A2 is involved in macrophage activation and is sufficient for macrophage effector functions in allergic pulmonary inflammation. J Immunol. 2013;190(12):5927–38. https://doi.org/10.4049/jimmunol.1203202

[33]

Yamaguchi M, Zacharia J, Laidlaw TM, Balestrieri B. PLA2G5 regulates transglutaminase activity of human IL‐4‐activated M2 macrophages through PGE2 generation. J Leukoc Biol. 2016;100(1):131–41. https://doi.org/10.1189/jlb.3A0815-372R

[34]

Muñoz NM, Meliton AY, Arm JP, Bonventre JV, Cho W, Leff AR. Deletion of secretory group V phospholipase A2 attenuates cell migration and airway hyperresponsiveness in immunosensitized mice. J Immunol. 2007;179(7):4800–7. https://doi.org/10.4049/jimmunol.179.7.4800

[35]

Doherty TA, Khorram N, Lund S, Mehta AK, Croft M, Broide DH. Lung type 2 innate lymphoid cells express Cysteinyl leukotriene receptor 1, which regulates TH2 cytokine production. J Allergy Clin Immunol. 2013;132(1):205–13. https://doi.org/10.1016/j.jaci.2013.03.048

[36]

Wojno ED, Monticelli LA, Tran SV, Alenghat T, Osborne LC, Thome JJ, et al. The prostaglandin D2 receptor CRTH2 regulates accumulation of group 2 innate lymphoid cells in the inflamed lung. Mucosal Immunol. 2015;8(6):1313–23. https://doi.org/10.1038/mi.2015.21

[37]

Yamaguchi M, Samuchiwal SK, Quehenberger O, Boyce JA, Balestrieri B. Macrophages regulate lung ILC2 activation via Pla2g5‐dependent mechanisms. Mucosal Immunol. 2018;11(3):615–26. https://doi.org/10.1038/mi.2017.99

[38]

Dixon RA, Diehl RE, Opas E, Rands E, Vickers PJ, Evans JF, et al. Requirement of a 5‐lipoxygenase‐activating protein for leukotriene synthesis. Nature. 1990;343(6255):282–4. https://doi.org/10.1038/343282a0

[39]

Reid GK, Kargman S, Vickers PJ, Mancini JA, Léveillé C, Ethier D, et al. Correlation between expression of 5‐lipoxygenase‐activating protein, 5‐lipoxygenase, and cellular leukotriene synthesis. J Biol Chem. 1990;265(32):19818–23. https://doi.org/10.1016/s0021-9258(17)45446-9

[40]

Kanaoka Y, Boyce JA. Cysteinyl leukotrienes and their receptors: cellular distribution and function in immune and inflammatory responses. J Immunol. 2004;173(3):1503–10. https://doi.org/10.4049/jimmunol.173.3.1503

[41]

Lund SJ, Portillo A, Cavagnero K, Baum RE, Naji LH, Badrani JH, et al. Leukotriene C4 potentiates IL‐33‐induced group 2 innate lymphoid cell activation and lung inflammation. J Immunol. 2017;199(3):1096–104. https://doi.org/10.4049/jimmunol.1601569

[42]

Krishnamoorthy N, Burkett PR, Dalli J, Abdulnour REE, Colas R, Ramon S, et al. Cutting edge: maresin‐1 engages regulatory T cells to limit type 2 innate lymphoid cell activation and promote resolution of lung inflammation. J Immunol. 2015;194(3):863–7. https://doi.org/10.4049/jimmunol.1402534

[43]

Machado‐Carvalho L, Roca‐Ferrer J, Picado C. Prostaglandin E2 receptors in asthma and in chronic rhinosinusitis/nasal polyps with and without aspirin hypersensitivity. Respir Res. 2014;15(1):100. https://doi.org/10.1186/s12931-014-0100-7

[44]

Maric J, Ravindran A, Mazzurana L, Björklund ÅK, Van Acker A, Rao A, et al. Prostaglandin E2 suppresses human group 2 innate lymphoid cell function. J Allergy Clin Immunol. 2018;141(5):1761–73.e6. https://doi.org/10.1016/j.jaci.2017.09.050

[45]

Sreeramkumar V, Fresno M, Cuesta N. Prostaglandin E2 and T cells: friends or foes? Immunol Cell Biol. 2012;90(6):579–86. https://doi.org/10.1038/icb.2011.75

[46]

Konya V, Üllen A, Kampitsch N, Theiler A, Philipose S, Parzmair GP, et al. Endothelial E‐type prostanoid 4 receptors promote barrier function and inhibit neutrophil trafficking. J Allergy Clin Immunol. 2013;131(2):532–40. e1–2. https://doi.org/10.1016/j.jaci.2012.05.008

[47]

Luschnig‐Schratl P, Sturm EM, Konya V, Philipose S, Marsche G, Fröhlich E, et al. EP4 receptor stimulation down‐regulates human eosinophil function. Cell Mol Life Sci. 2011;68(21):3573–87. https://doi.org/10.1007/s00018-011-0642-5

[48]

MacKenzie KF, Clark K, Naqvi S, McGuire VA, Nöehren G, Kristariyanto Y, et al. PGE(2) induces macrophage IL‐10 production and a regulatory‐like phenotype via a protein kinase A‐SIK‐CRTC3 pathway. J Immunol. 2013;190(2):565–77. https://doi.org/10.4049/jimmunol.1202462

[49]

McNabney SM, Henagan TM. Short chain fatty acids in the colon and peripheral tissues: a focus on butyrate, colon cancer, obesity and insulin resistance. Nutrients. 2017;9(12):1348. https://doi.org/10.3390/nu9121348

[50]

Lewis G, Wang B, Shafiei Jahani P, Hurrell BP, Banie H, Aleman Muench GR, et al. Dietary fiber‐induced microbial Short chain fatty acids suppress ILC2‐dependent airway inflammation. Front Immunol. 2019;10:2051. https://doi.org/10.3389/fimmu.2019.02051

[51]

Rao DM, Phan DT, Choo MJ, Weaver MR, Oberley‐Deegan RE, Bowler RP, et al. Impact of fatty acid binding protein 5‐deficiency on COPD exacerbations and cigarette smoke‐induced inflammatory response to bacterial infection. Clin Transl Med. 2019;8(1):7. https://doi.org/10.1186/s40169-019-0227-8

[52]

Moore SM, Holt VV, Malpass LR, Hines IN, Wheeler MD. Fatty acid‐binding protein 5 limits the anti‐inflammatory response in murine macrophages. Mol Immunol. 2015;67(2 Pt B):265–75. https://doi.org/10.1016/j.molimm.2015.06.001

[53]

Gally F, Chu HW, Bowler RP. Cigarette smoke decreases airway epithelial FABP5 expression and promotes Pseudomonas aeruginosa infection. PLoS One. 2013;8(1):e51784. https://doi.org/10.1371/journal.pone.0051784

[54]

Kobayashi S, Tayama S, Phung HT, Kagawa Y, Miyazaki H, Takahashi Y, et al. Fatty acid‐binding protein 5 limits ILC2‐mediated allergic lung inflammation in a murine asthma model. Sci Rep. 2020;10(1):16617. https://doi.org/10.1038/s41598-020-73935-y

[55]

Cekic C, Linden J. Purinergic regulation of the immune system. Nat Rev Immunol. 2016;16(3):177–92. https://doi.org/10.1038/nri.2016.4

[56]

Allard B, Allard D, Buisseret L, Stagg J. The adenosine pathway in immuno‐oncology. Nat Rev Clin Oncol. 2020;17(10):611–29. https://doi.org/10.1038/s41571-020-0382-2

[57]

Le TT, Berg NK, Harting MT, Li X, Eltzschig HK, Yuan X. Purinergic signaling in pulmonary inflammation. Front Immunol. 2019;10:1633. https://doi.org/10.3389/fimmu.2019.01633

[58]

Xiao Q, Han X, Liu G, Zhou D, Zhang L, He J, et al. Adenosine restrains ILC2‐driven allergic airway inflammation via A2A receptor. Mucosal Immunol. 2022;15(2):338–50. https://doi.org/10.1038/s41385-021-00475-7

[59]

Lu HC, Mackie K. An introduction to the endogenous cannabinoid system. Biol Psychiatr. 2016;79(7):516–25. https://doi.org/10.1016/j.biopsych.2015.07.028

[60]

Angelina A, Pérez‐Diego M, López‐Abente J, Palomares O. The role of cannabinoids in allergic diseases: collegium internationale allergologicum (CIA) update 2020. Int Arch Allergy Immunol. 2020;181(8):565–84. https://doi.org/10.1159/000508989

[61]

Hurrell BP, Helou DG, Shafiei‐Jahani P, Howard E, Painter JD, Quach C, et al. Cannabinoid receptor 2 engagement promotes group 2 innate lymphoid cell expansion and enhances airway hyperreactivity. J Allergy Clin Immunol. 2022;149(5):1628–42.e10. https://doi.org/10.1016/j.jaci.2021.09.037

[62]

Kanj AN, Kottom TJ, Schaefbauer KJ, Choudhury M, Limper AH, Skalski JH. Dysbiosis of the intestinal fungal microbiota increases lung resident group 2 innate lymphoid cells and is associated with enhanced asthma severity in mice and humans. Respir Res. 2023;24(1):144. https://doi.org/10.1186/s12931-023-02422-5

[63]
De Bels D, Corazza F, Balestra C. Oxygen sensing, homeostasis, and disease. N Engl J Med. 2011;365(19):1845. authorreply1846. https://doi.org/10.1056/NEJMc1110602
[64]

Wiesener MS, Jürgensen JS, Rosenberger C, Scholze CK, Hörstrup JH, Warnecke C, et al. Widespread hypoxia‐inducible expression of HIF‐2alpha in distinct cell populations of different organs. Faseb J. 2003;17(2):271–3. https://doi.org/10.1096/fj.02-0445fje

[65]

Han J, Wan Q, Seo GY, Kim K, El Baghdady S, Lee JH, et al. Hypoxia induces adrenomedullin from lung epithelia, stimulating ILC2 inflammation and immunity. J Exp Med. 2022;219(6):e20211985. https://doi.org/10.1084/jem.20211985

[66]

Daynes RA, Jones DC. Emerging roles of PPARs in inflammation and immunity. Nat Rev Immunol. 2002;2(10):748–59. https://doi.org/10.1038/nri912

[67]

Xiao Q, He J, Lei A, Xu H, Zhang L, Zhou P, et al. PPARγ enhances ILC2 function during allergic airway inflammation via transcription regulation of ST2. Mucosal Immunol. 2021;14(2):468–78. https://doi.org/10.1038/s41385-020-00339-6

[68]

Symowski C, Voehringer D. Th2 cell‐derived IL‐4/IL‐13 promote ILC2 accumulation in the lung by ILC2‐intrinsic STAT6 signaling in mice. Eur J Immunol. 2019;49(9):1421–32. https://doi.org/10.1002/eji.201948161

[69]

Cui G, Shimba A, Jin J, Hojo N, Asahi T, Abe S, et al. CD45 alleviates airway inflammation and lung fibrosis by limiting expansion and activation of ILC2s. Proc Natl Acad Sci USA. 2023;120(36):e2215941120. https://doi.org/10.1073/pnas.2215941120

[70]

Snelgrove RJ, Goulding J, Didierlaurent AM, Lyonga D, Vekaria S, Edwards L, et al. A critical function for CD200 in lung immune homeostasis and the severity of influenza infection. Nat Immunol. 2008;9(9):1074–83. https://doi.org/10.1038/ni.1637

[71]

Casulli J, Fife ME, Houston SA, Rossi S, Dow J, Williamson ED, et al. CD200R deletion promotes a neutrophil niche for Francisella tularensis and increases infectious burden and mortality. Nat Commun. 2019;10(1):2121. https://doi.org/10.1038/s41467-019-10156-6

[72]

Liu JQ, Hu A, Zhu J, Yu J, Talebian F, Bai XF. CD200‐CD200R pathway in the regulation of tumor immune microenvironment and immunotherapy. Adv Exp Med Biol. 2020;1223:155–65. https://doi.org/10.1007/978-3-030-35582-1_8

[73]

Shafiei‐Jahani P, Helou DG, Hurrell BP, Howard E, Quach C, Painter JD, et al. CD200‐CD200R immune checkpoint engagement regulates ILC2 effector function and ameliorates lung inflammation in asthma. Nat Commun. 2021;12(1):2526. https://doi.org/10.1038/s41467-021-22832-7

[74]

Chiang EY, Mellman I. TIGIT‐CD226‐PVR axis: advancing immune checkpoint blockade for cancer immunotherapy. J Immunother Cancer. 2022;10(4):e004711. https://doi.org/10.1136/jitc-2022-004711

[75]

Sakano Y, Sakano K, Hurrell BP, Helou DG, Shafiei‐Jahani P, Kazemi MH, et al. Blocking CD226 regulates type 2 innate lymphoid cell effector function and alleviates airway hyperreactivity. J Allergy Clin Immunol. 2024;153(5):1406–22.e6. https://doi.org/10.1016/j.jaci.2024.01.003

[76]

Seillet C, Mielke LA, Amann‐Zalcenstein DB, Su S, Gao J, Almeida FF, et al. Deciphering the innate lymphoid cell transcriptional program. Cell Rep. 2016;17(2):436–47. https://doi.org/10.1016/j.celrep.2016.09.025

[77]

Yu Y, Tsang JCH, Wang C, Clare S, Wang J, Chen X, et al. Single‐cell RNA‐seq identifies a PD‐1hi ILC progenitor and defines its development pathway. Nature. 2016;539(7627):102–6. https://doi.org/10.1038/nature20105

[78]

Taylor S, Huang Y, Mallett G, Stathopoulou C, Felizardo TC, Sun MA, et al. PD‐1 regulates KLRG1+ group 2 innate lymphoid cells. J Exp Med. 2017;214(6):1663–78. https://doi.org/10.1084/jem.20161653

[79]

Helou DG, Shafiei‐Jahani P, Lo R, Howard E, Hurrell BP, Galle‐Treger L, et al. PD‐1 pathway regulates ILC2 metabolism and PD‐1 agonist treatment ameliorates airway hyperreactivity. Nat Commun. 2020;11(1):3998. https://doi.org/10.1038/s41467-020-17813-1

[80]

Cephus JY, Stier MT, Fuseini H, Yung JA, Toki S, Bloodworth MH, et al. Testosterone attenuates group 2 innate lymphoid cell‐mediated airway inflammation. Cell Rep. 2017;21(9):2487–99. https://doi.org/10.1016/j.celrep.2017.10.110

[81]

Blanquart E, Mandonnet A, Mars M, Cenac C, Anesi N, Mercier P, et al. Targeting androgen signaling in ILC2s protects from IL‐33–driven lung inflammation, independently of KLRG1. J Allergy Clin Immunol. 2022;149(1):237–51.e12. https://doi.org/10.1016/j.jaci.2021.04.029

[82]

Adams KL, Riparini G, Banerjee P, Breur M, Bugiani M, Gallo V. Endothelin‐1 signaling maintains glial progenitor proliferation in the postnatal subventricular zone. Nat Commun. 2020;11(1):2138. https://doi.org/10.1038/s41467-020-16028-8

[83]

Ford TJ, Corcoran D, Padmanabhan S, Aman A, Rocchiccioli P, Good R, et al. Genetic dysregulation of endothelin‐1 is implicated in coronary microvascular dysfunction. Eur Heart J. 2020;41(34):3239–52. https://doi.org/10.1093/eurheartj/ehz915

[84]

Belaidi E, Morand J, Gras E, Pépin JL, Godin‐Ribuot D. Targeting the ROS‐HIF‐1‐endothelin axis as a therapeutic approach for the treatment of obstructive sleep apnea‐related cardiovascular complications. Pharmacol Ther. 2016;168:1–11. https://doi.org/10.1016/j.pharmthera.2016.07.010

[85]

Kowalczyk A, Kleniewska P, Kolodziejczyk M, Skibska B, Goraca A. The role of endothelin‐1 and endothelin receptor antagonists in inflammatory response and sepsis. Arch Immunol Ther Exp. 2015;63(1):41–52. https://doi.org/10.1007/s00005-014-0310-1

[86]

Leask A. Potential therapeutic targets for cardiac fibrosis: TGFbeta, angiotensin, endothelin, CCN2, and PDGF, partners in fibroblast activation. Circ Res. 2010;106(11):1675–80. https://doi.org/10.1161/CIRCRESAHA.110.217737

[87]

Zhang X, Chen Z, Zuo S, Sun H, Li X, Lu X, et al. Endothelin‐A receptor antagonist alleviates allergic airway inflammation via the inhibition of ILC2 function. Front Immunol. 2022;13:835953. https://doi.org/10.3389/fimmu.2022.835953

[88]

Kawai T, Akira S. TLR signaling. Semin Immunol. 2007;19(1):24–32. https://doi.org/10.1016/j.smim.2006.12.004

[89]

Okuzumi S, Miyata J, Kabata H, Mochimaru T, Kagawa S, Masaki K, et al. TLR7 agonist suppresses group 2 innate lymphoid cell‐mediated inflammation via IL‐27‐producing interstitial macrophages. Am J Respir Cell Mol Biol. 2021;65(3):309–18. https://doi.org/10.1165/rcmb.2021-0042OC

[90]

Fu L, Zhao J, Huang J, Li N, Dong X, He Y, et al. A mitochondrial STAT3‐methionine metabolism axis promotes ILC2‐driven allergic lung inflammation. J Allergy Clin Immunol. 2022;149(6):2091–104. https://doi.org/10.1016/j.jaci.2021.12.783

[91]

Toki S, Goleniewska K, Reiss S, Zhou W, Newcomb DC, Bloodworth MH, et al. The histone deacetylase inhibitor trichostatin A suppresses murine innate allergic inflammation by blocking group 2 innate lymphoid cell (ILC2) activation. Thorax. 2016;71(7):633–45. https://doi.org/10.1136/thoraxjnl-2015-207728

[92]

Cahalan SM, Lukacs V, Ranade SS, Shu C, Bandell M, Patapoutian A. Piezo1 links mechanical forces to red blood cell volume. Elife. 2015;4:e07370. https://doi.org/10.7554/eLife.07370

[93]

Jia Q, Yang Y, Chen X, Yao S, Hu Z. Emerging roles of mechanosensitive ion channels in acute lung injury/acute respiratory distress syndrome. Respir Res. 2022;23(1):366. https://doi.org/10.1186/s12931-022-02303-3

[94]

Hurrell BP, Shen S, Li X, Sakano Y, Kazemi MH, Quach C, et al. Piezo1 channels restrain ILC2s and regulate the development of airway hyperreactivity. J Exp Med. 2024;221(5):e20231835. https://doi.org/10.1084/jem.20231835

[95]

Patel DF, Peiró T, Bruno N, Vuononvirta J, Akthar S, Puttur F, et al. Neutrophils restrain allergic airway inflammation by limiting ILC2 function and monocyte‐dendritic cell antigen presentation. Sci Immunol. 2019;4(41):eaax7006. https://doi.org/10.1126/sciimmunol.aax7006

[96]

Shimizu Y, Horigane‐Konakai Y, Ishii Y, Sugimoto C, Wakao H. Mucosal‐associated invariant T cells repress group 2 innate lymphoid cells in Alternaria alternata‐induced model of allergic airway inflammation. Front Immunol. 2022;13:1005226. https://doi.org/10.3389/fimmu.2022.1005226

[97]

Su HH, Cheng CM, Yang YN, Chang YW, Li CY, Wu ST, et al. Acrylamide, an air pollutant, enhances allergen‐induced eosinophilic lung inflammation via group 2 innate lymphoid cells. Mucosal Immunol. 2024;17(1):13–24. https://doi.org/10.1016/j.mucimm.2023.09.007

[98]

Alvaro‐Lozano M, Akdis CA, Akdis M, Alviani C, Angier E, Arasi S, et al. EAACI allergen immunotherapy user's guide. Pediatr Allergy Immunol. 2020;31(Suppl 25):1–101. https://doi.org/10.1111/pai.13189

[99]

Karakoc‐Aydiner E, Eifan AO, Baris S, Gunay E, Akturk E, Akkoc T, et al. Long‐term effect of sublingual and subcutaneous immunotherapy in dust mite‐allergic children with asthma/rhinitis: a 3‐year prospective randomized controlled trial. J Investig Allergol Clin Immunol. 2015;25(5):334–42.

[100]

Zielen S, Kardos P, Madonini E. Steroid‐sparing effects with allergen‐specific immunotherapy in children with asthma: a randomized controlled trial. J Allergy Clin Immunol. 2010;126(5):942–9. https://doi.org/10.1016/j.jaci.2010.06.002

[101]

Tanaka A, Tohda Y, Okamiya K, Azuma R, Terada I, Adachi M. Efficacy and safety of HDM SLIT tablet in Japanese adults with allergic asthma. J Allergy Clin Immunol Pract. 2020;8(2):710–20.e14. https://doi.org/10.1016/j.jaip.2019.09.002

[102]

Bush RK, Swenson C, Fahlberg B, Evans MD, Esch R, Morris M, et al. House dust mite sublingual immunotherapy: results of a US trial. J Allergy Clin Immunol. 2011;127(4):974–81. e1–7. https://doi.org/10.1016/j.jaci.2010.11.045

[103]

Radtke F, MacDonald HR, Tacchini‐Cottier F. Regulation of innate and adaptive immunity by Notch. Nat Rev Immunol. 2013;13(6):427–37. https://doi.org/10.1038/nri3445

[104]

Tong Y, Wang L, Wang L, Song J, Fan J, Lai C, et al. Allergen immunotherapy combined with Notch pathway inhibitors improves HDM‐induced allergic airway inflammation and inhibits ILC2 activation. Front Immunol. 2024;14:1264071. https://doi.org/10.3389/fimmu.2023.1264071

[105]

Kudo F, Ikutani M, Iseki M, Takaki S. Cyclosporin A indirectly attenuates activation of group 2 innate lymphoid cells in papain‐induced lung inflammation. Cell Immunol. 2018;323:33–40. https://doi.org/10.1016/j.cellimm.2017.10.010

[106]

Tomiaki C, Miyauchi K, Ki S, Suzuki Y, Suzuki N, Morimoto H, et al. Role of FK506‐sensitive signals in asthmatic lung inflammation. Front Immunol. 2022;13:1014462. https://doi.org/10.3389/fimmu.2022.1014462

[107]

McCracken GH, Jr. Etiology and treatment of pneumonia. Pediatr Infect Dis J. 2000;19(4):373–7. https://doi.org/10.1097/00006454-200004000-00032

[108]

Matsuyama T, Machida K, Motomura Y, Takagi K, Doutake Y, Tanoue‐Hamu A, et al. Long‐acting muscarinic antagonist regulates group 2 innate lymphoid cell‐dependent airway eosinophilic inflammation. Allergy. 2021;76(9):2785–96. https://doi.org/10.1111/all.14836

[109]

Gao F, Chiu SM, Motan DAL, Zhang Z, Chen L, Ji HL, et al. Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death Dis. 2016;7(1):e2062. https://doi.org/10.1038/cddis.2015.327

[110]

Fang SB, Zhang HY, Jiang AY, Fan XL, Lin YD, Li CL, et al. Human iPSC‐MSCs prevent steroid‐resistant neutrophilic airway inflammation via modulating Th17 phenotypes. Stem Cell Res Ther. 2018;9(1):147. https://doi.org/10.1186/s13287-018-0897-y

[111]

Sun YQ, Deng MX, He J, Zeng QX, Wen W, Wong DSH, et al. Human pluripotent stem cell‐derived mesenchymal stem cells prevent allergic airway inflammation in mice. Stem Cell. 2012;30(12):2692–9. https://doi.org/10.1002/stem.1241

[112]

de Castro LL, Xisto DG, Kitoko JZ, Cruz FF, Olsen PC, Redondo PAG, et al. Human adipose tissue mesenchymal stromal cells and their extracellular vesicles act differentially on lung mechanics and inflammation in experimental allergic asthma. Stem Cell Res Ther. 2017;8(1):151. https://doi.org/10.1186/s13287-017-0600-8

[113]

Fang SB, Zhang HY, Wang C, He BX, Liu XQ, Meng XC, et al. Small extracellular vesicles derived from human mesenchymal stromal cells prevent group 2 innate lymphoid cell‐dominant allergic airway inflammation through delivery of miR‐146a‐5p. J Extracell Vesicles. 2020;9(1):1723260. https://doi.org/10.1080/20013078.2020.1723260

[114]

Kalincik T, Brown JWL, Robertson N, Willis M, Scolding N, Rice CM, et al. Treatment effectiveness of alemtuzumab compared with natalizumab, fingolimod, and interferon beta in relapsing‐remitting multiple sclerosis: a cohort study. Lancet Neurol. 2017;16(4):271–81. https://doi.org/10.1016/S1474-4422(17)30007-8

[115]

Shafiei‐Jahani P, Helou DG, Hurrell BP, Galle‐Treger L, Howard E, Quach C, et al. CD52‐targeted depletion by Alemtuzumab ameliorates allergic airway hyperreactivity and lung inflammation. Mucosal Immunol. 2021;14(4):899–911. https://doi.org/10.1038/s41385-021-00388-5

[116]

Vojdeman FJ, Herman SEM, Kirkby N, Wiestner A, van T' Veer MB, Tjønnfjord GE, et al. Soluble CD52 is an indicator of disease activity in chronic lymphocytic leukemia. Leuk Lymphoma. 2017;58(10):2356–62. https://doi.org/10.1080/10428194.2017.1285027

[117]

Ishizawa K, Fukuhara N, Nakaseko C, Chiba S, Ogura M, Okamoto A, et al. Safety, efficacy and pharmacokinetics of humanized anti‐CD52 monoclonal antibody alemtuzumab in Japanese patients with relapsed or refractory B‐cell chronic lymphocytic leukemia. Jpn J Clin Oncol. 2017;47(1):54–60. https://doi.org/10.1093/jjco/hyw146

iLABMED
Pages 205-220
Cite this article:
Cui L, Wang Y. Regulatory factors of ILC2 are therapeutic targets for lung inflammation. iLABMED, 2024, 2(3): 205-220. https://doi.org/10.1002/ila2.59

63

Views

1

Downloads

0

Crossref

Altmetrics

Received: 12 June 2024
Accepted: 17 July 2024
Published: 23 September 2024
© 2024 The Author(s). Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

Return