AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

The Interconnection Between the Liver and Other Organs: Insights for Hepatic Long–Term Normothermic Machine Perfusion

Ruilin Cai1,2,3Zhiying Liu4Zhiyin Feng5Meiting Qin1,2,3Jiahao Li1,2,3Qiang Zhao1,2,3( )Xiaoshun He1,2,3 ( )
Organ Transplant Center, The First Affiliated Hospital, Sun Yat‐sen University, Guangzhou, Guangdong, China
Guangdong Provincial Key Laboratory of Organ Medicine, Guangzhou, Guangdong, China
Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, Guangdong, China
Zhongshan School of Medicine, Sun Yat‐sen University, Guangzhou, Guangdong, China
Sun Yat‐sen University School of Medicine, Sun Yat‐sen University, Shenzhen, Guangdong, China

Ruilin Cai and Zhiying Liu contributed equally as first authors.

Show Author Information

Graphical Abstract

This paper reviews clinical and experimental studies, highlighting the impact of multiple organ absence on the long‐term survival of isolated livers during long–term normothermic machine perfusion(LNMP). It also proposes recommendations for establishing a more stable LNMP platform.

Abstract

Normothermic machine perfusion (NMP) is emerging as a promising technique for organ preservation, evaluation, and scientific research, offering the potential to enhance the viability and function of donor organs. To fully harness the benefits of NMP, sustained long–term NMP (LNMP) at 36℃ for periods exceeding 24 h is required. However, the development of stable LNMP devices is hindered by our limited understanding of ex vivo liver physiology. This review synthesizes insights from clinical and experimental studies to highlight the knowledge gaps associated with the impact of the absence of various organs or systems on isolated livers during ex vivo perfusion. Additionally, it discusses liver injuries and adverse events documented in published liver LNMP studies, elucidating their underlying mechanisms. By analyzing these findings, the paper proposes a series of recommendations to establish a more stable LNMP platform, aiming to optimize the outcomes of liver preservation and expand the applications of NMP in clinical practice and research.

References

1

D. Nasralla, C. C. Coussios, H. Mergental, et al., “A Randomized Trial of Normothermic Preservation in Liver Transplantation,” Nature 557, no. 7703 (2018): 50–56, https://doi.org/10.1038/s41586-018-0047-9.

2

Z. Guo, Q. Zhao, Z. Jia, et al., “A Randomized‐Controlled Trial of Ischemia‐Free Liver Transplantation for End‐Stage Liver Disease,” Journal of Hepatology 79, no. 2 (2023): 394–402, https://doi.org/10.1016/j.jhep.2023.04.010.

3

M. Fodor, B. Cardini, W. Peter, et al., “Static Cold Storage Compared With Normothermic Machine Perfusion of the Liver and Effect on Ischaemic‐Type Biliary Lesions After Transplantation: A Propensity Score‐Matched Study,” British Journal of Surgery 108, no. 9 (2021): 1082–1089, https://doi.org/10.1093/bjs/znab118.

4

R. Gaurav, A. J. Butler, V. Kosmoliaptsis, et al., “Liver Transplantation Outcomes From Controlled Circulatory Death Donors: SCS vs In Situ NRP vs Ex Situ NMP,” Annals of Surgery 275, no. 6 (2022): 1156–1164, https://doi.org/10.1097/sla.0000000000005428.

5

J. Hefler, D. Leon‐Izquierdo, B. A. Marfil‐Garza, et al., “Long‐Term Outcomes After Normothermic Machine Perfusion in Liver Transplantation—Experience at a Single North American Center,” American Journal of Transplantation 23, no. 7 (2023): 976–986, https://doi.org/10.1016/j.ajt.2023.04.013.

6

D. Eshmuminov, D. Becker, L. Bautista Borrego, et al., “An Integrated Perfusion Machine Preserves Injured Human Livers for 1 Week,” Nature Biotechnology 38, no. 2 (2020): 189–198, https://doi.org/10.1038/s41587-019-0374-x.

7

A. Schlegel, H. Mergental, C. Fondevila, R. J. Porte, P. J. Friend, and P. Dutkowski, “Machine Perfusion of the Liver and Bioengineering,” Journal of Hepatology 78, no. 6 (2023): 1181–1198, https://doi.org/10.1016/j.jhep.2023.02.009.

8

N. S. Lau, M. Ly, C. Dennis, et al., “Long‐Term Ex Situ Normothermic Perfusion of Human Split Livers for More Than 1 Week,” Nature Communications 14, no. 1 (2023): 4755, https://doi.org/10.1038/s41467-023-40154-8.

9

R. Ascione, S. Talpahewa, C. Rajakaruna, et al., “Splanchnic Organ Injury During Coronary Surgery With or Without Cardiopulmonary Bypass: A Randomized, Controlled Trial,” The Annals of Thoracic Surgery 81, no. 1 (2006): 97–103, https://doi.org/10.1016/j.athoracsur.2005.06.038.

10

B. M. Matata, A. W. Sosnowski, and M. Galiñanes, “Off‐Pump Bypass Graft Operation Significantly Reduces Oxidative Stress and Inflammation,” The Annals of Thoracic Surgery 69, no. 3 (2000): 785–791, https://doi.org/10.1016/s0003-4975(99)01420-4.

11

A. M. Morariu, B. G. Loef, L. P. H. J. Aarts, et al., “Dexamethasone: Benefit and Prejudice for Patients Undergoing On‐Pump Coronary Artery Bypass Grafting,” Chest 128, no. 4 (2005): 2677–2687, https://doi.org/10.1378/chest.128.4.2677.

12

T. McGarry, M. Biniecka, D. J. Veale, and U. Fearon, “Hypoxia, Oxidative Stress and Inflammation,” Free Radical Biology and Medicine 125 (2018): 15–24, https://doi.org/10.1016/j.freeradbiomed.2018.03.042.

13

J. E. Millar, J. P. Fanning, C. I. McDonald, D. F. McAuley, and J. F. Fraser, “The Inflammatory Response to Extracorporeal Membrane Oxygenation (ECMO): A Review of the Pathophysiology,” Critical Care 20, no. 1 (2016): 387, https://doi.org/10.1186/s13054-016-1570-4.

14

M. Kyaruzi, T. Iyigün, V. O. Diker, B. O. Kurt, Z. Kahraman, and B. Onan, “Trace Element Status and Postoperative Morbidity After On‐Pump Coronary Artery Bypass Surgery,” Biological Trace Element Research 201, no. 6 (2023): 2711–2720, https://doi.org/10.1007/s12011-022-03368-3.

15

W. Tang, W. T. Zhang, J. Zhang, et al., “Prevalence of Hematologic Complications on Extracorporeal Membranous Oxygenation in Critically Ill Pediatric Patients: A Systematic Review and Meta‐Analysis,” Thrombosis Research 222 (2023): 75–84, https://doi.org/10.1016/j.thromres.2022.12.014.

16

A. S. Arykbaeva, L. J. S. Lerink, J. Vos, et al., “Red Blood Cells as Oxygen Carrier During Normothermic Machine Perfusion of Kidney Grafts: Friend or Foe?,” American Journal of Transplantation 24, no. 7 (2024): 1172–1179, https://doi.org/10.1016/j.ajt.2024.01.002.

17

B. Lascaris, A. M. Thorne, T. Lisman, M. W. N. Nijsten, R. J. Porte, and V. E. de Meijer, “Long‐Term Normothermic Machine Preservation of Human Livers: What Is Needed to Succeed?,” American Journal of Physiology‐Gastrointestinal and Liver Physiology 322, no. 2 (2022): G183–G200, https://doi.org/10.1152/ajpgi.00257.2021.

18

F. Vallelian, P. W. Buehler, and D. J. Schaer, “Hemolysis, Free Hemoglobin Toxicity, and Scavenger Protein Therapeutics,” Blood 140, no. 17 (2022): 1837–1844, https://doi.org/10.1182/blood.2022015596.

19

F. Vinchi, S. Gastaldi, L. Silengo, F. Altruda, and E. Tolosano, “Hemopexin Prevents Endothelial Damage and Liver Congestion in a Mouse Model of Heme Overload,” The American Journal of Pathology 173, no. 1 (2008): 289–299, https://doi.org/10.2353/ajpath.2008.071130.

20

G. K. Michalopoulos and B. Bhushan, “Liver Regeneration: Biological and Pathological Mechanisms and Implications,” Nature Reviews Gastroenterology & Hepatology 18, no. 1 (2021): 40–55, https://doi.org/10.1038/s41575-020-0342-4.

21

S. Paranjpe, W. C. Bowen, W. M. Mars, et al., “Combined Systemic Elimination of MET and Epidermal Growth Factor Receptor Signaling Completely Abolishes Liver Regeneration and Leads to Liver Decompensation,” Hepatology 64, no. 5 (2016): 1711–1724, https://doi.org/10.1002/hep.28721.

22

C. Degirolamo, C. Sabbà, and A. Moschetta, “Therapeutic Potential of the Endocrine Fibroblast Growth Factors FGF19, FGF21 and FGF23,” Nature Reviews Drug Discovery 15, no. 1 (2016): 51–69, https://doi.org/10.1038/nrd.2015.9.

23

F. G. Schaap, M. Trauner, and P. L. M. Jansen, “Bile Acid Receptors as Targets for Drug Development,” Nature Reviews Gastroenterology & Hepatology 11, no. 1 (2014): 55–67, https://doi.org/10.1038/nrgastro.2013.151.

24

I. Kim, S. H. Ahn, T. Inagaki, et al., “Differential Regulation of Bile Acid Homeostasis by the Farnesoid X Receptor in Liver and Intestine,” Journal of Lipid Research 48, no. 12 (2007): 2664–2672, https://doi.org/10.1194/jlr.M700330-JLR200.

25
D. A. Kelly, “Intestinal Failure‐Associated Liver Disease: What Do We Know Today?,” supplement, Gastroenterology 130, no. S2 (2006): S70–S77, https://doi.org/10.1053/j.gastro.2005.10.066.
26

R. T. Khalaf and R. J. Sokol, “New Insights Into Intestinal Failure‐Associated Liver Disease in Children,” Hepatology 71, no. 4 (2020): 1486–1498, https://doi.org/10.1002/hep.31152.

27

M. Hecker, T. Linder, J. Ott, et al., “Immunomodulation by Lipid Emulsions in Pulmonary Inflammation: A Randomized Controlled Trial,” Critical Care 19, no. 1 (2015): 226, https://doi.org/10.1186/s13054-015-0933-6.

28

L. Pradelli, K. Mayer, M. Muscaritoli, and A. R. Heller, “N‐3 Fatty Acid‐Enriched Parenteral Nutrition Regimens in Elective Surgical and ICU Patients: A Meta‐Analysis,” Critical Care 16, no. 5 (2012): R184, https://doi.org/10.1186/cc11668.

29

M. Wolley, M. Jardine, and C. A. Hutchison, “Exploring the Clinical Relevance of Providing Increased Removal of Large Middle Molecules,” Clinical Journal of the American Society of Nephrology 13, no. 5 (2018): 805–814, https://doi.org/10.2215/cjn.10110917.

30
G. Cobo, B. Lindholm, and P. Stenvinkel, “Chronic Inflammation in End‐Stage Renal Disease and Dialysis,” supplement, Nephrology Dialysis Transplantation 33, no. S3 (2018): ⅲ35–ⅲ40, https://doi.org/10.1093/ndt/gfy175.
31

J. Gupta, N. Mitra, P. A. Kanetsky, et al., “Association Between Albuminuria, Kidney Function, and Inflammatory Biomarker Profile in CKD in CRIC,” Clinical Journal of the American Society of Nephrology 7, no. 12 (2012): 1938–1946, https://doi.org/10.2215/cjn.03500412.

32

B. Friedrich, D. Alexander, A. Janessa, H. U. Häring, F. Lang, and T. Risler, “Acute Effects of Hemodialysis on Cytokine Transcription Profiles: Evidence for C‐Reactive Protein‐Dependency of Mediator Induction,” Kidney International 70, no. 12 (2006): 2124–2130, https://doi.org/10.1038/sj.ki.5001865.

33

R. Vanholder, R. De Smet, G. Glorieux, et al., “Review on Uremic Toxins: Classification, Concentration, and Interindividual Variability,” Kidney International 63, no. 5 (2003): 1934–1943, https://doi.org/10.1046/j.1523-1755.2003.00924.x.

34

L. Rui, “Energy Metabolism in the Liver,” Compr Physiol 4, no. 1 (2014): 177–197, https://doi.org/10.1002/cphy.c130024.

35

V. L. Tokarz, P. E. MacDonald, and A. Klip, “The Cell Biology of Systemic Insulin Function,” Journal of Cell Biology 217, no. 7 (2018): 2273–2289, https://doi.org/10.1083/jcb.201802095.

36

G. K. Michalopoulos, “Principles of Liver Regeneration and Growth Homeostasis,” Comprehensive Physiology 3, no. 1 (2013): 485–513, https://doi.org/10.1002/cphy.c120014.

37

A. Francavilla, T. E. Starzl, K. Porter, et al., “Screening for Candidate Hepatic Growth Factors by Selective Portal Infusion After Canine Eck's Fistula,” Hepatology 14, no. 4 pt. 1 (1991): 665–670, https://doi.org/10.1016/0270-9139(91)90055-z.

38

M. D. Michael, R. N. Kulkarni, C. Postic, et al., “Loss of Insulin Signaling in Hepatocytes Leads to Severe Insulin Resistance and Progressive Hepatic Dysfunction,” Molecular Cell 6, no. 1 (2000): 87–97.

39

C. Luu, R. Thapa, T. Rose, et al., “Identification of Nonalcoholic Fatty Liver Disease Following Pancreatectomy for Noninvasive Intraductal Papillary Mucinous Neoplasm,” International Journal of Surgery 58 (2018): 46–49, https://doi.org/10.1016/j.ijsu.2018.09.002.

40

S. Yamazaki, T. Takayama, T. Higaki, et al., “Pancrelipase With Branched‐Chain Amino Acids for Preventing Nonalcoholic Fatty Liver Disease After Pancreaticoduodenectomy,” Journal of Gastroenterology 51, no. 1 (2016): 55–62, https://doi.org/10.1007/s00535-015-1077-9.

41

R. Ullah, N. Rauf, G. Nabi, et al., “Role of Nutrition in the Pathogenesis and Prevention of Non‐Alcoholic Fatty Liver Disease: Recent Updates,” International Journal of Biological Sciences 15, no. 2 (2019): 265–276, https://doi.org/10.7150/ijbs.30121.

42

F. Ferraù and M. Korbonits, “Metabolic Comorbidities in Cushing's Syndrome,” European Journal of Endocrinology 173, no. 4 (2015): M133–M157, https://doi.org/10.1530/eje-15-0354.

43

C. J. Petersons, B. L. Mangelsdorf, A. B. Jenkins, et al., “Effects of Low‐Dose Prednisolone on Hepatic and Peripheral Insulin Sensitivity, Insulin Secretion, and Abdominal Adiposity in Patients With Inflammatory Rheumatologic Disease,” Diabetes Care 36, no. 9 (2013): 2822–2829, https://doi.org/10.2337/dc12-2617.

44

A. T. Meszaros, J. Hofmann, M. L. Buch, et al., “Mitochondrial Respiration During Normothermic Liver Machine Perfusion Predicts Clinical Outcome,” eBioMedicine 85 (2022): 104311, https://doi.org/10.1016/j.ebiom.2022.104311.

45

A. J. Butler, M. A. Rees, D. G. D. Wight, et al., “Successful Extracorporeal Porcine Liver Perfusion for 72 hr,” Transplantation 73, no. 8 (2002): 1212–1218, https://doi.org/10.1097/00007890-200204270-00005.

46

M. A. Rees, A. J. Butler, G. Chavez‐Cartaya, et al., “Prolonged Function of Extracorporeal hDAF Transgenic Pig Livers Perfused With Human Blood,” Transplantation 73, no. 8 (2002): 1194–1202, https://doi.org/10.1097/00007890-200204270-00003.

47

R. Bellomo, B. Marino, G. Starkey, et al., “Extended Normothermic Extracorporeal Perfusion of Isolated Human Liver After Warm Ischaemia: A Preliminary Report,” Critical Care and Resuscitation 16, no. 3 (2014): 197–201.

48

C. J. Imber, S. D. St Peter, I. L. De Cenarruzabeitia, et al., “Optimisation of Bile Production During Normothermic Preservation of Porcine Livers,” American Journal of Transplantation 2, no. 7 (2002): 593–599, https://doi.org/10.1034/j.1600-6143.2002.20703.x.

49

J. Luo, B. Ko, M. Elliott, et al., “A Nontumorigenic Variant of FGF19 Treats Cholestatic Liver Diseases,” Science Translational Medicine 6, no. 247 (2014): 247ra100, https://doi.org/10.1126/scitranslmed.3009098.

50

F. Nevens, P. Andreone, G. Mazzella, et al., “A Placebo‐Controlled Trial of Obeticholic Acid in Primary Biliary Cholangitis,” New England Journal of Medicine 375, no. 7 (2016): 631–643, https://doi.org/10.1056/nejmoa1509840.

51

L. Campana, H. Esser, M. Huch, and S. Forbes, “Liver Regeneration and Inflammation: From Fundamental Science to Clinical Applications,” Nature Reviews Molecular Cell Biology 22, no. 9 (2021): 608–624, https://doi.org/10.1038/s41580-021-00373-7.

52

S. Zwirner, A. A. Abu Rmilah, S. Klotz, et al., “First‐In‐Class MKK4 Inhibitors Enhance Liver Regeneration and Prevent Liver Failure,” Cell 187, no. 7 (2024): 1666–1684.e26, https://doi.org/10.1016/j.cell.2024.02.023.

53

R. W. Jamieson, M. Zilvetti, D. Roy, et al., “Hepatic Steatosis and Normothermic Perfusion—Preliminary Experiments in a Porcine Model,” Transplantation 92, no. 3 (2011): 289–295, https://doi.org/10.1097/tp.0b013e318223d817.

54

N. S. Lau, M. Ly, C. Dennis, et al., “Long‐Term Normothermic Perfusion of Human Livers for Longer Than 12 days,” Artificial Organs 46, no. 12 (2022): 2504–2510, https://doi.org/10.1111/aor.14372.

55

Q. Liu, A. Nassar, L. Buccini, et al., “Lipid Metabolism and Functional Assessment of Discarded Human Livers With Steatosis Undergoing 24 Hours of Normothermic Machine Perfusion,” Liver Transplantation 24, no. 2 (2018): 233–245, https://doi.org/10.1002/lt.24972.

56

S. D. St Peter, C. J. Imber, I. Lopez, D. Hughes, and P. J. Friend, “Extended Preservation of Non‐Heart‐Beating Donor Livers With Normothermic Machine Perfusion,” British Journal of Surgery 89, no. 5 (2002): 609–616, https://doi.org/10.1046/j.1365-2168.2002.02052.x.

57

C. J. Imber, S. D. St Peter, I. Lopez de Cenarruzabeitia, et al., “Advantages of Normothermic Perfusion over Cold Storage in Liver Preservation,” Transplantation 73, no. 5 (2002): 701–709, https://doi.org/10.1097/00007890-200203150-00008.

58

H. J. Müller‐Eberhard, “Molecular Organization and Function of the Complement System,” Annual Review of Biochemistry 57 (1988): 321–347, https://doi.org/10.1146/annurev.bi.57.070188.001541.

59

M. C. Howard, C. L. Nauser, C. A. Farrar, and S. H. Sacks, “Complement in Ischaemia–Reperfusion Injury and Transplantation,” Seminars in Immunopathology 43, no. 6 (2021): 789–797, https://doi.org/10.1007/s00281-021-00896-3.

60

T. Köhler, E. Schwier, J. Praxenthaler, C. Kirchner, D. Henzler, and C. Eickmeyer, “Therapeutic Modulation of the Host Defense by Hemoadsorption With Cytosorb®‐Basics, Indications and Perspectives—A Scoping Review,” International Journal of Molecular Sciences 22, no. 23 (2021): 12786, https://doi.org/10.3390/ijms222312786.

61

T. G. Gleason, M. Argenziano, J. E. Bavaria, et al., “Hemoadsorption to Reduce Plasma‐Free Hemoglobin During Cardiac Surgery: Results of REFRESH Ⅰ Pilot Study,” Seminars in Thoracic and Cardiovascular Surgery 31, no. 4 (2019): 783–793, https://doi.org/10.1053/j.semtcvs.2019.05.006.

62

M. Diab, T. Lehmann, W. Bothe, et al., “Cytokine Hemoadsorption During Cardiac Surgery Versus Standard Surgical Care for Infective Endocarditis (Remove): Results From a Multicenter Randomized Controlled Trial,” Circulation 145, no. 13 (2022): 959–968, https://doi.org/10.1161/circulationaha.121.056940.

63

D. C. Mastellos, D. Ricklin, and J. D. Lambris, “Clinical Promise of Next‐Generation Complement Therapeutics,” Nature Reviews Drug Discovery 18, no. 9 (2019): 707–729, https://doi.org/10.1038/s41573-019-0031-6.

64

M. Bral, B. Gala‐Lopez, A. Thiesen, et al., “Determination of Minimal Hemoglobin Level Necessary for Normothermic Porcine Ex Situ Liver Perfusion,” Transplantation 102, no. 8 (2018): 1284–1292, https://doi.org/10.1097/tp.0000000000002272.

65

M. J. Schuler, D. Becker, M. Mueller, et al., “Observations and Findings During the Development of a Subnormothermic/Normothermic Long‐Term Ex Vivo Liver Perfusion Machine,” Artificial Organs 47, no. 2 (2023): 317–329, https://doi.org/10.1111/aor.14403.

66

T. Vogel, J. G. Brockmann, A. Quaglia, et al., “The 24‐Hour Normothermic Machine Perfusion of Discarded Human Liver Grafts,” Liver Transplantation 23, no. 2 (2017): 207–220, https://doi.org/10.1002/lt.24672.

67

P. A. Clavien, P. Dutkowski, M. Mueller, et al., “Transplantation of a Human Liver Following 3 Days of Ex Situ Normothermic Preservation,” Nature Biotechnology 40, no. 11 (2022): 1610–1616, https://doi.org/10.1038/s41587-022-01354-7.

68

Q. Liu, A. Nassar, L. Buccini, et al., “Ex Situ 86‐Hour Liver Perfusion: Pushing the Boundary of Organ Preservation,” Liver Transplantation 24, no. 4 (2018): 557–561, https://doi.org/10.1002/lt.25007.

69

N. D. Chapman, P. D. Goldsworthy, W. Volwiler, L. M. Nyhus, and A. J. Martinis, “The Isolated Perfused Bovine Liver,” The Journal of Experimental Medicine 113, no. 6 (1961): 981–996, https://doi.org/10.1084/jem.113.6.981.

70

M. Bral, N. Aboelnazar, S. Hatami, et al., “Clearance of Transaminases During Normothermic Ex Situ Liver Perfusion,” PLoS One 14, no. 4 (2019): e0215619, https://doi.org/10.1371/journal.pone.0215619.

Organ Medicine
Pages 6-20
Cite this article:
Cai R, Liu Z, Feng Z, et al. The Interconnection Between the Liver and Other Organs: Insights for Hepatic Long–Term Normothermic Machine Perfusion. Organ Medicine, 2024, 1(1): 6-20. https://doi.org/10.1002/orm2.8

36

Views

0

Downloads

0

Crossref

Altmetrics

Received: 28 August 2024
Accepted: 04 September 2024
Published: 20 October 2024
© 2024 The Author(s).

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return