AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Thermal behavior of building walls in summer: Comparison of available analytical methods and experimental results for a case study

Silvana Flores Larsen1( )Celina Filippín2Graciela Lesino1
INENCO — Universidad Nacional de Salta — CONICET Buenos Aires 177, (4400) — SaltaArgentina
Universidad Nacional de La Pampa — CONICET — Spinetto 785 — (6300) Santa Rosa, La Pampa, Argentina
Show Author Information

Abstract

There is a wide variety of thermal analyses that can be used to characterize the thermal behavior of a wall under certain outdoor conditions. The selection of a particular wall configuration for a building project involves not only the outdoor climate, but also the whole building characteristics, orientation, percentage of glazed areas, occupation periods, lifestyles, etc. In this paper we apply common available methods for wall thermal analysis to two particular wall types, a massive brick wall and an insulated brick wall, in order to compare the information given by each method and to evaluate how these methods can help in the selection of a certain type of wall. The studied methods include the estimation of the wall time lag and decrement factor, the harmonically heated slab model, the Athanassouli’s method, and numerical simulations. The study was performed for the walls of a residence for university students and it was built in La Pampa (Argentina). Once the building was finished, the transient thermal behavior of two walls was monitored during one summer week. The experimental results are presented and the fitting with the thermal behavior predicted by each method is discussed. The thermal comfort indicators PMV (predicted mean vote) and PPD (predicted percentage of dissatisfied) were calculated for two flats, at ground floor and first floor respectively.

References

 
G Athanassouli, P Massouros (1999). A model of the thermal restoration transient state of an opaque wall after the interruption of solar radiation. Solar Energy, 66(11): 21-31.
 
H Asan (2000). Investigation of wall's optimum insulation position from maximum time lag and minimum decrement factor point of view. Energy and Buildings, 32(2): 197-203.
 
H Asan (2006). Numerical computation of time lags and decrement factors for different building materials. Building and Environment, 41(5): 615-620.
 
H Asan, YS Sancaktar (1998). Effects of wall's thermophysical properties on time lag and decrement factor. Energy and Buildings, 28(8): 159-166.
 
JD Balcomb (1992). Passive Solar Buildings. Cambridge, MA: The MIT Press. pp. 235-292.
 
HS Carslaw, JC Jaeger (1959). Conduction of Heat in Solids, 2nd edn. London: Oxford University Press.
 
YA Cengel (1998). Heat Transfer a Practical Approach. New York: McGraw-Hill.
 
J Christian, J Kosny (1995). Toward a national opaque wall rating label. In: Proceedings of 6th Thermal Performance of the Exterior Envelopes, ASHRAE.
 
JA Duffie, WA Beckman (1991). Solar Engineering of Thermal Processes, 2nd edn. New York: Wiley.
 
A Esteves, J Fernández, M Basso, J Mitchel, C de Rosa (1994), Simulación térmica de edificios: aplicación de los modelos Quick y SIMEDIF. In: Proceedings of 17º Reunión de Trabajo de la Asociación Argentina de Energía Solar (ASADES ‘94), Santa Fe, Argentina. (in Spanish)
 
PO Fanger (1973). Thermal Comfort. New York: McGraw-Hill.
 
C Filippín, A Beascochea, S Flores Larsen, G Lesino (2002). Monitoreo y simulación del comportamiento térmico de un conjunto de viviendas bioclimáticas para estudiantes de escasos recursos de la Universidad Nacional de La Pampa, Argentina. In: Proceedings of XI Congresso Ibérico e VI Ibero-Americano de Energía Solar (SPES 2002), Vilamoura, Portugal. (in Spanish)
 
C Filippín, S Flores Larsen, A Beascochea, G Lesino (2005). Response of conventional and energy-saving buildings to design and human dependent factors. Solar Energy, 78(3): 455-470.
 
C Filippín, S Flores Larsen, L Flores (2007). Comportamiento energético de verano de una vivienda másica y una liviana en la región central de Argentina. Avances en Energías Renovables y Medio Ambiente, 11: 05.17-05.23, Argentina.(in Spanish)
 
C Filippín, S Flores Larsen, E López Gay (2008). Energy improvement of a conventional dwelling in Argentina through thermal simulation. Renewable Energy, 33(10): 2246-2257.
 
L Flores, S Flores Larsen, C Filippín (2007). Comportamiento térmico de invierno y verano de viviendas de interés social en la provincia de Salta. Avances en Energías Renovables y Medio Ambiente, 11: 05.167-05.173, Argentina.(in Spanish)
 
S Flores Larsen, C Filippín, G Lesino (2003). Earth-to-air heat exchange through a buried pipe at a school in La Pampa, Argentina. In: Proceedings of 20th Conference on Passive and Low Energy Architecture (PLEA 2003), Santiago de Chile.
 
S Flores Larsen, C Filippín, A Beascochea, G Lesino (2008). An experience on integrating monitoring and simulation tools in the design of energy-saving buildings. Energy and Buildings, 40(6): 987-997.
 
S Flores Larsen, G Lesino (2001). A new code for the hour-by-hour thermal behavior simulation of buildings. In: Proceedings of VII International Building Simulation Congress (BS 2001), Río de Janeiro, Brazil, pp. 75-82.
 
S Flores Larsen, G Lesino (2002). Modelización de la transferencia de calor en edificios. In: Proceedings of 9th Latin American Congress in Heat and Mass Transfer (LATCYM 2002), San Juan, Puerto Rico, pp. 66-71.
 
V García, A Iriarte, G Lesino, S Flores Larsen, C Matías (2005). Special greenhouse for walnut grafting in arid regions. In: Proceedings of Solar World Congress (ISES 2005), DY Goswami, S Vijayaraghaven, R Campbell-Howe eds., Orlando, USA.
 
B Givoni (1969). Man, Climate and Architecture. England: Elsevier.
 
H Grossi Gallegos, R Righini (2007). Atlas de energía solar de la República Argentina. Secretaría de Ciencia, Tecnología e Innovación Productiva. Dirección Nacional de Programas y Proyectos Especiales. (in Spanish)
 
A Hernández, G Lesino (2000). Simulación mediante SIMEDIF del comportamiento térmico de un prototipo de vivienda liviana construido en la Universidad Nacional de Salta. Avances en Energías Renovables y Medio Ambiente, 4: 8.29-8.34.(in Spanish)
 
ISO 7730 (1984). Moderate thermal environments: determination of the PMV and PPD indices and specification of the conditions for thermal comfort. International Standards Organization, Geneva.
 
KJ Kontoleon, EA Eumorfopoulou (2008). The influence of wall orientation and exterior surface solar absorptivity on time lag and decrement factor in the Greek region. Renewable Energy, 33(7): 1652-1664.
 
J Kosny, A Desjarlais (1994). Influence of architectural details on the overall thermal performance of residential wall systems. Journal of Building Physics, 18(1): 53-69.
 
J Kosny, E Kossecka (2002). Multi-dimensional heat transfer through complex building envelope assemblies in hourly energy simulation programs. Energy and Buildings, 34(5): 445-454.
 
E Magyari, B Keller (1998). The storage capacity of a harmonically heated slab revisited. International Journal of Heat and Mass Transfer, 41(10): 1199-1204.
 
TMI Mahlia, BN Taufiq, H Ismail, H Masjuki (2007). Correlation between thermal conductivity and the thickness of selected insulation materials for building wall. Energy and Buildings, 39(2): 182-187.
 
V Olgyay (1963). Design with Climate. New Jersey: Princeton University Press.
 
L Reichelt, U Meingast, U Renz (2002). Calculating transient wall heat flux from measurements of surface temperature. International Journal of Heat and Mass Transfer, 45(3): 579-584.
 
MNA Saïd, WC Brown, CJ Shirtliffe, AHP Maurenbrecher (1999). Monitoring of the building envelope of a heritage house: A case study. Energy and Buildings, 30(3): 211-219.
 
Servicio Meteorológico Nacional, Fuerza Aérea Argentina, 1992.
 
R Yumrutas, M Unsall, M Kanoglu (2005). Periodic solution of transient heat flow through multilayer walls and flat roofs by complex finite Fourier transform technique. Building and Environment, 40(8): 1117-1125.
 
R Yumrutas, O Kas-ka, E Yıldırım (2007). Estimation of total equivalent temperature difference values for multilayer walls and flat roofs by using periodic solution. Building and Environment, 42(5): 1878-1885.
Building Simulation
Pages 3-18
Cite this article:
Larsen SF, Filippín C, Lesino G. Thermal behavior of building walls in summer: Comparison of available analytical methods and experimental results for a case study. Building Simulation, 2009, 2(1): 3-18. https://doi.org/10.1007/s12273-009-9103-6

550

Views

25

Crossref

N/A

Web of Science

32

Scopus

0

CSCD

Altmetrics

Received: 13 January 2009
Revised: 11 February 2009
Accepted: 13 February 2009
Published: 26 April 2009
© Tsinghua University Press and Springer-Verlag 2009
Return