AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Silicon-Based Molecular Switch Junctions

Daijiro NozakiGianaurelio Cuniberti( )
Institute for Material Science and Max Bergmann Center of BiomaterialsDresden University of TechnologyDresdenD-01062Germany
Show Author Information

Graphical Abstract

Abstract

In contrast to the static operations of conventional semiconductor devices, the dynamic conformational freedom in molecular devices opens up the possibility of using individual molecules as new types of devices such as a molecular conformational switch or for molecular data storage. Bistable molecules—such as those having two stable cis and trans isomeric configurations—could provide, once clamped between two electrodes, a switching phenomenon in the non-equilibrium current response. Here, we model molecular switch junctions formed at silicon contacts and demonstrate the potential of such tunable molecular switches in electrode/molecule/electrode configurations. Using the non-equilibrium Green function (NEGF) approach implemented with the density-functional-based tight-binding (DFTB) theory, a series of properties such as electron transmissions, currentvoltage characteristics in the different isomer conformations, and potential energy surfaces (PESs) as a function of the reaction coordinates along the trans to cis transition were calculated for two azobenzene-based model compounds. Furthermore, in order to investigate the stability of molecular switches under ambient conditions, molecular dynamics (MD) simulations at room temperature were performed and time-dependent fluctuations of the conductance along the MD pathways were calculated. Our numerical results show that the transmission spectra of the cis isomers are more conductive than trans counterparts inside the bias window for both model compounds. The currentvoltage characteristics consequently show the same trends. Additionally, calculations of the time-dependent transmission fluctuations along the MD pathways have shown that the transmission in the cis isomers is always significantly larger than that in their trans counterparts, showing that molecular switches can be expected to work as robust molecular switching components.

Electronic Supplementary Material

Download File(s)
nr-2-8-648_ESM.pdf (925 KB)

References

1

Chen, J.; Reed, M. A.; Rawlett, A. M.; Tour, J. M. Large on–off ratios and negative differential resistance in a molecular electronic device. Science 1999, 286, 1550–1552.

2

Cuniberti, G.; Fagas, G.; Richter, K. Introducing Molecular Electronics; Springer-Verlag Berlin, Heidelberg, 2005.

3

Aviram, A.; Ratner, M. A. Molecular rectifiers. Chem. Phys. Lett. 1974, 29, 277.

4

Fernández-Torrente, I.; Franke, K. J.; Pascual, J. I. Vibrational Kondo effect in pure organic charge-transfer assemblies. Phys. Rev. Lett. 2008, 101, 217203.

5

Schulze, G.; Franke, K. J.; Gagliardi, A.; Romano, G.; Lin, C. S.; Rosa, A. L.; Niehaus, T. A.; Frauenheim, T.; Di Carlo, A.; Pecchia, A.; Pascual, J. I. Resonant electron heating and molecular phonon cooling in single C-60 junctions. Phys. Rev. Lett. 2008, 100, 136801.

6

Cui, Y.; Wei, Q.; Park, H.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292.

7

Patolsky, F.; Zheng, G.; Hayden, O.; Lakadamyali, M.; Zhuang, X.; Lieber, C. M. Electrical detection of single viruses. Proc. Natl. Acad. Sci. USA 2004, 101, 14017–14022.

8

Feringa, B. L. Molecular Switches; Wiley-VCH: Weinheim, 2001.

9

Zhang, C.; Du, M. -H.; Cheng, H. -P.; Zhang, X. -G.; Roitberg, A. E.; Krause, J. L. Coherent electron transport through an azobenzene molecule: A light-driven molecular switch. Phys. Rev. Lett. 2004, 92, 158301/1–4.

10

Zhang, C.; He, Y.; Cheng, H. -P.; Xue, Y.; Ratner, M. A.; Zhang, X. -G.; Krstic, P. Current–voltage characteristics through a single light-sensitive molecule. Phys. Rev. B 2006, 73, 125445.

11

del Valle, M.; Gutierrez, R.; Tejedor, C.; Cuniberti, G. Tuning the conductance of a molecular switch. Nat. Nanotechnol. 2007, 2, 176–179.

12

Staykov, A.; Nozaki, D.; Yoshizawa, K. Photoswitching of conductivity through a diarylperfluorocyclopentene nanowire. J. Phys. Chem. C 2007, 111, 3517–3521.

13

Dulic, D.; van der Molen, S. J.; Kudernac, T.; Jonkman, H. T.; de Jong, J. J. D.; Bowden, T. N.; van Esch, J.; Feringa, B. L.; van Wees, B. One-way optoelectronic switching of photochromic molecules on gold. J. Phys. Rev. Lett. 2003, 91, 207402/1–4.

14

Lörtscher, E.; Ciszek, J. W.; Tour, J.; Riel, H. Reversible and controllable switching of a single-molecule junction. Small 2006, 2, 973–977.

15

Henzl, J.; Mehlhorn, M.; Gawronski, H.; Rieder, K. -H.; Morgenstern, K. Reversible cis–trans isomerization of a single azobenzene molecule. Angew. Chem. Int. Ed. 2006, 45, 603–606.

16

Henzl, J.; Mehlhorn, M.; Morgenstern, K. Amino-nitro-azobenzene dimers as a prototype for a molecular-level machine. Nanotechnology 2007, 18, 495502–1–6.

17

Choi, B. -Y.; Kahng, S. -J.; Kim, S.; Kim, H.; Kim, H. W.; Song, Y. J.; Ihm, J.; Kuk, Y. Conformational molecular switch of the azobenzene molecule: A scanning tunneling microscopy study. Phys. Rev. Lett. 2006, 96, 156106.

18

Alemani, M.; Peters, M. V.; Hecht, S.; Rieder, K. -H.; Moresco, F.; Grill, L. Electric field-induced isomerization of azobenzene by STM. J. Am. Chem. Soc. 2006, 128, 14446–14447.

19

Alemani, M.; Selvanathan, S.; Ample, F.; Peters, M. V.; Rieder, K. -H.; Moresco, F.; Joachim, C.; Hecht, S.; Grill, L. Adsorption and switching properties of azobenzene derivatives on different noble metal surfaces: Au(111), Cu(111), and Au(100). J. Phys. Chem. C 2008, 112, 10509–10514.

20

Dri, C.; Peters, M. V.; Schwarz, J.; Hecht, S.; Grill, L. Spatial periodicity in molecular switching. Nat. Nanotechnol. 2008, 3, 649–653.

21

Frauenheim, T.; Seifert, G.; Elstner, M.; Hajnal, Z.; Jungnickel, G.; Porezag, G.; Suhai, S.; Scholz, R. A self-consistent charge density-functional based tight-binding method for predictive materials simulations in physics, chemistry and biology. Phys. Status Solidi B 2000, 217, 41–62.

22

Elstner, M.; Porezag, G.; Jonkman, H. T.; Elsner, J.; Haugk, M.; Frauenheim, T.; Suhai, S.; Seifert, G. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B 1998, 58, 7260–7268.

23

Haugk, M.; Elsner, J.; Frauenheim, T. A density-functional based tight-binding approach to GaAs surface reconstructions. J. Phys. : Cond. Matt. 1997, 9, 7305–7315.

24

Szucs, B.; Hajnal, Z.; Frauenheim, T.; González, C.; Ortega, J.; Pérez, R.; Flores, F. Chalcogen passivation of GaAs(100) surfaces: Theoretical study. Appl. Surf. Sci. 2003, 212, 861–865.

25

Szucs, B.; Hajnal, Z.; Scholz, R.; Sanna, S.; Frauenheim, T. Theoretical study of the adsorption of a PTCDA monolayer on S-passivated GaAs(100). Appl. Surf. Sci. 2004, 234, 173–177.

26

Krüger, T.; Elstner, M.; Schiffels, P.; Frauenheim, T. Validation of the density-functional based tight-binding approximation method for the calculation of reaction energies and other data. J. Chem. Phys. 2005, 122, 114110.

27

Niehaus, T. A.; Elstner, M.; Frauenheim, T.; Suhai, S. Application of an approximate density-functional method to sulfur containing compounds. J. Mol. Struct. (THEOCHEM) 2001, 541, 185–194.

28

Elstner, M.; Frauenheim, T.; Kaxiras, E.; Seifert, G.; Suhai, S. A self-consistent charge density-functional based tight-binding scheme for large biomolecules. Phys. Status Solidi B 2000, 217, 357–376.

29

Elstner, M.; Hobza, P.; Frauenheim, T.; Suhai, S.; Kaxiras, E. Hydrogen bonding and stacking interactions of nucleic acid base pairs: A density-functional-theory based treatment. J. Chem. Phys. 2001, 114, 5149–5155.

30

Elstner, M.; Jalkanen, K. J.; Knapp-Mohammady, M.; Frauenheim, T.; Suhai, S. Energetics and structure of glycine and alanine based model peptides: Approximate SCC-DFTB, AM1 and PM3 methods in comparison with DFT, HF and MP2 calculations. Chem. Phys. 2001, 263, 203–219.

31

Di Carlo, A.; Pecchia, A.; Latessa, L.; Frauenheim, T.; Seifert, G. Lect. Notes Phys. 2005, 680, 153.

32

Pecchia, A.; Di Carlo, A. Atomistic theory of transport in organic and inorganic nanostructures. Rep. Prog. Phys. 2004, 67, 1497–1561.

33

Fisher, D. S.; Lee, P. A. Relation between conductivity and transmission matrix. Phys. Rev. B 1981, 23, 6851–6854.

34

Brown, E. V.; Grunneman, G. R. J. Am. Chem. Soc. 1975, 97, 621.

35

Sauer, P.; Allen, R. E. Multiple steps and multiple excitations in photoisomerization of azobenzene. Chem. Phys. Lett. 2008, 450, 192–195.

36

Füchsel, G.; Klamroth, T.; Dokic, J.; Saalfrank, P. On the electronic structure of neutral and ionic azobenzenes and their possible role as surface mounted molecular switches. J. Phys. Chem. B 2006, 110, 16337–16345.

37

Murata, H.; Itabashi, A.; Arai, T.; Tomitori, M. In Electronic Structure and Processes of Molecular-Based Interfaces: In Relation to Organic and Molecular Devices (ESPMI-06), Nagoya, Japan, 2006, p. 55.

38

Murata, H.; Itabashi, A. In MRS Fall Meeting, Boston, USA, 2004.

39

Itabashi, A.; Arai, T.; Tomitori, M.; Murata, H. In The Third International Conference on Molecular Electronics and Bioelectronics (M & BE3), Tokyo, Japan, 2005.

40

Eberl, K.; Schmidt, O. G. Nanotechnology–Thin solid films roll up into nanotubes. Nature 2001, 410, 168-168.

41

Deneke, C.; Schumann, J.; Engelhard, R.; Thomas, J.; Sigle, W.; Zschieschang, U.; Klauk, H.; Chuvilin, A.; Schmidt, O. G. Fabrication of radial superlattices based on different hybrid materials. Phys. Status Solidi C 2008, 5, 2704–2708.

42

Fagas, G.; Cuniberti, G.; Richter, K. Electron transport in nanotube-molecular-wire hybrids. Phys. Rev. B 2001, 63, 045416/1–4.

43

Cuniberti, G.; Grossmann, F.; Gutiérrez, R. The role of contacts in molecular electronics. Adv. Solid State Phys. 2002, 42, 133–149.

44

Nozaki, D.; Girard, Y.; Yoshizawa, K. Theoretical study of long-range electron transport in molecular junctions. J. Phys. Chem. C 2008, 112, 17408–17415.

45

Ciacchi, L. C.; Payne, M. C. First-principles molecular-dynamics study of native oxide growth on Si(001). Phys. Rev. Lett. 2005, 95, 196101.

Nano Research
Pages 648-659
Cite this article:
Nozaki D, Cuniberti G. Silicon-Based Molecular Switch Junctions. Nano Research, 2009, 2(8): 648-659. https://doi.org/10.1007/s12274-009-9067-y

803

Views

22

Downloads

29

Crossref

N/A

Web of Science

29

Scopus

0

CSCD

Altmetrics

Received: 04 May 2009
Revised: 03 June 2009
Accepted: 03 June 2009
Published: 01 August 2009
© Tsinghua University Press and Springer-Verlag 2009

This article is published with open access at Springerlink.com

Return