Sort:
Research Article Issue
Optoelectronic switching of nanowire-based hybrid organic/oxide/semiconductor field-effect transistors
Nano Research 2015, 8(4): 1229-1240
Published: 22 November 2014
Abstract PDF (11.4 MB) Collect
Downloads:10

A novel photosensitive hybrid field-effect transistor (FET) which consists of a multiple-shell of organic porphyrin film/oxide/silicon nanowires is presented. Due to the oxide shell around the nanowires, photoswitching of the current in the hybrid nanodevices is guided by the electric field effect, induced by charge redistribution within the organic film. This principle is an alternative to a photoinduced electron injection, valid for devices relying on direct junctions between organic molecules and metals or semiconductors. The switching dynamics of the hybrid nanodevices upon violet light illumination is investigated and a strong dependence on the thickness of the porphyrin film wrapping the nanowires is found. Furthermore, the thickness of the organic films is found to be a crucial parameter also for the switching efficiency of the nanowire FET, represented by the ratio of currents under light illumination (ON) and in dark conditions (OFF). We suggest a simple model of porphyrin film charging to explain the optoelectronic behavior of nanowire FETs mediated by organic film/oxide/semiconductor junctions.

Open Access Research Article Issue
Silicon-Based Molecular Switch Junctions
Nano Research 2009, 2(8): 648-659
Published: 01 August 2009
Abstract PDF (2.2 MB) Collect
Downloads:22

In contrast to the static operations of conventional semiconductor devices, the dynamic conformational freedom in molecular devices opens up the possibility of using individual molecules as new types of devices such as a molecular conformational switch or for molecular data storage. Bistable molecules—such as those having two stable cis and trans isomeric configurations—could provide, once clamped between two electrodes, a switching phenomenon in the non-equilibrium current response. Here, we model molecular switch junctions formed at silicon contacts and demonstrate the potential of such tunable molecular switches in electrode/molecule/electrode configurations. Using the non-equilibrium Green function (NEGF) approach implemented with the density-functional-based tight-binding (DFTB) theory, a series of properties such as electron transmissions, currentvoltage characteristics in the different isomer conformations, and potential energy surfaces (PESs) as a function of the reaction coordinates along the trans to cis transition were calculated for two azobenzene-based model compounds. Furthermore, in order to investigate the stability of molecular switches under ambient conditions, molecular dynamics (MD) simulations at room temperature were performed and time-dependent fluctuations of the conductance along the MD pathways were calculated. Our numerical results show that the transmission spectra of the cis isomers are more conductive than trans counterparts inside the bias window for both model compounds. The currentvoltage characteristics consequently show the same trends. Additionally, calculations of the time-dependent transmission fluctuations along the MD pathways have shown that the transmission in the cis isomers is always significantly larger than that in their trans counterparts, showing that molecular switches can be expected to work as robust molecular switching components.

Total 2