AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

CO Dissociation and CO+O Reactions on a Nanosized Iron Cluster

Giorgio Lanzani1Albert G. Nasibulin2Kari Laasonen1( )Esko I. Kauppinen2( )
Department of ChemistryP.O. Box 3000, FIN-90014 University of OuluFinland
Department of Applied Physics and Center for New MaterialsHelsinki University of Technology, P.O. Box 5100EspooFIN-02150Finland
Show Author Information

Graphical Abstract

Abstract

Catalysis over metal nanoparticles is essential for the growth of carbon nanotubes and all the properties of the resulting nanotube, such as diameter and chirality, are affected by the metal particle. Thus, it is very important to understand the carbon chemistry taking place on nanometer size metal particles. Here we present the first ab initio computational study of chemical reactions on a nanosized iron cluster. The clusters have reaction sites, such as edges and vertexes between the facets, Which have not been studied before. First principles electronic structure calculations, fully incorporating the effects of spin polarization and non-collinear magnetic moments, have been used to investigate CO disproportionation on an isolated Fe55 cluster. After CO dissociation, O atoms remain on the surface while C atoms move into the cluster, presumably as the initial step toward carbide formation. Here we show that the lowest CO dissociation barrier found on the cluster (0.77 eV) is lower than on most previously studied Fe surfaces. This dissociation occurs on a vertex between the facets. Several possible paths for CO2 formation were identified. The calculated lowest reaction barrier is 1.08 eV, which is comparable to the barrier of 0.65 eV obtained by experiment.

References

1

Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Physical Properties of Carbon Nanotubes; Imperial College Press: London, 1998.

2

Endo, M. Grow carbon fibers in the vapor phase. Chemtech 1988, 18, 568–576.

3

Ebbesen, T. W.; Ajayan, P. M. Large-scale synthesis of carbon nanotubes. Nature 1992, 358, 220–222.

4

Guo, T.; Nikolaev, P.; Rinzer, A. G.; Tomanek, D.; Colberg, D. T.; Smalley, R. E. Self-assembly of tubular fullerenes. J. Phys. Chem. 1995, 99, 10694–10697.

5

Nikolaev, P.; Bronikowski, M. J.; Bradley, R. K.; Rohmund, F.; Colbert, D. T.; A. Smith, K.; Smalley, R. E. Gas-phase catalytic growth of single-walled C carbon nanotubes from carbon monoxide. Chem. Phys. Lett. 1999, 313, 91–97.

6

Harutyunyan, A.; Pradhan, B.; Kim, U.; Chen, G.; Eklund, P. CVD synthesis of single wall carbon nanotubes under "soft" conditions. Nano Lett. 2002, 2, 525–530.

7

Hata, K.; Futaba, D. N.; Minuzo, K.; Namai, T.; Yumura, M.; Ijima, S. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 2004, 306, 1362–1364.

8

Singh, C.; Shaer, M. S. P.; Koziol, K. K. K.; Kinloch, I. A.; Windle, A. H. Towards the production of large-scale aligned carbon nanotubes. Chem. Phys. Lett. 2003, 372, 860–865.

9

Moisala, A.; Nasibulin, A. G.; Brown, D. P.; Jiang, H.; Khriachtchev, L.; Kauppinen, E. I. Single-walled carbon nanotube synthesis using ferrocene and iron pentacarbonyl in a laminar flow reactor. Chem. Eng. Sci. 2006, 61, 4393–4402.

10

Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A.; Carbon nanotubes—The route toward applications. Science 2002, 297, 787–792.

11

Ziolo, R. F.; Giannelis, E. P; Weinstein, B. A.; O'Horo, M. P.; Ganguly, B. N.; Mehrotra, V.; Russell, M. W.; Huffman, D. R. Matrix-mediated synthesis of nanocrystalline (-Fe2O3: A new optically transparent magnetic material. Science 1992, 257, 219–223.

12

Simon, U.; Schön, G.; Schmid, G. The application of Au55 clusters as quantum dots. Angew. Chem. Int. Ed. Engl. 1993, 32, 250–254.

13

Yu, W.; Liu, H.; Tao, Q.; Modification of metal cations to metal clusters in liquid medium. Chem. Commun. 1996, 1773–1774.

14

Molina, L. M.; Hammer, B. Active role of oxide support during CO oxidation at Au/MgO. Phys. Rev. Lett. 2003, 90, 206102.

15

Falsig, H.; Hvolbæk, B.; Kristensen, I. S.; Jiang, T.; Bligaard, T.; Christensen, C. H.; NØrskov J. K. Trends in the catalytic CO oxidation activity of nanoparticles. Angew. Chem. Int. Ed. Engl. 2008, 47, 4835–4839.

16

Turner, M.; Golovko, V. B.; Vaughan, O. P. H.; Abdulkin, P.; Berenguer-Murcia, A.; Tikhov, M. S.; Johnson, B. F. G.; Lambert, R. M. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 2008, 454, 981–983.

17

Campbell, C. T. The active site in nanoparticle gold catalysis. Science 2004, 306, 234–235.

18

Kojima, I.; Kurahashi, M. Scanning tunneling microscope and atomic force microscope study of epitaxially grown palladium crystallites on graphite. J. Vac. Sci. Technol. 1994, B12, 1780–1782.

19

Ogura, S.; Sato, K.; Inoue, Y. E. Effects of RuO dispersion on photocatalytic activity for water decomposition of BaTi4O9 with a pentagonal prism tunnel and K2Ti4O9 with a zigzag layer structure. Phys. Chem. Chem. Phys. 2000, 2, 2449–2454.

20

Teramura, K.; Maeda, K.; Saito, T.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. Characterization of ruthenium oxide nanocluster as a cocatalyst with (Ga1xZnx)(N1xOx) for photocatalytic overall water splitting. J. Phys. Chem. B 2005, 109, 21915–21921.

21

Nasibulin, A. G.; Moisala, A.; Brown, D. P.; Kauppinen, E. I. Carbon nanotubes and onions from carbon monoxide using Ni(acac)2 and Cu(acac)2 as catalyst precursors. Carbon 2003, 41, 2711–2724.

22

Franklin, N. R.; Li, Y.; Chen, R. J.; Javey, A.; Dai. H. Patterned growth of single-walled carbon nanotubes on full 4-inch wafers. Appl. Phys. Lett. 2001, 79, 4571–4573.

23

Jiang, H.; Nasibulin, A. G.; Brown, D. P.; Kauppinen, E. I. Unambiguous atomic structural determination of single-walled carbon nanotubes by electron diffraction. Carbon 2007, 45, 662–667.

24

Nasibulin, A. G.; Brown, D. P.; Queipo, P.; Gonzalez, D.; Jiang, H.; Anisimov, A. S.; Kauppinen E. I. Effect of CO2 and H2 on the synthesis of single-walled CNTs. Phys. Stat. Sol. 2006, 243, 3087–3090.

25

Kandalama, A. K.; Chatterjee, B.; Khanna, S. N.; Rao, B. K.; Jena, P.; Reddy, B. V. Oxidation of CO on Fe2O3 model surfaces. Surf. Sci. 2007, 601, 4873–4880.

26

Li, P.; Miser, D. E.; Rabiei, S.; Yadav, R. T.; Hajaligo, M. R. The removal of carbon monoxide by iron oxide nanoparticles. App. Catal. B: Env. 2003, 43, 151–162.

27

Kim, M. S.; Rodriguez, N. M.; Baker, R. T. K. The interaction of hydrocarbons with copper-nickel and nickel in the formation of carbon filaments. J. Catal. 1991, 131, 60–73.

28

Reilly, P. T. A.; Whitten, W. B. The role of free radical condensates in the production of carbon nanotubes during the hydrocarbon CVD process. Carbon 2006, 44, 1653–1660.

29

Raty, J. Y.; Gygi, F.; Galli, G. Growth of carbon nanotubes on metal nanoparticles: A microscopic mechanism from ab initio molecular dynamics simulations. Phys. Rev. Lett. 2005, 95, 096103.

30

Feng, D.; Bolton, K.; Rosén, A. Molecular dynamics study of SWNT growth on catalyst particles without temperature gradients. Comp. Mater. Sci. 2006, 35, 243–246.

31

Nasibulin, A. G.; Queipo, P.; Shandakov, S. D.; Brown, D. P.; Jiang, H.; Pikhitsa, P. V.; Tolochko, O. V.; Kauppinen. E. I. Studies on mechanism of single-walled carbon nanotube formation. J. Nanosci. Nanotechnol. 2006, 6, 1233–1246.

32

Nasibulin, A. G.; Moisala, A.; Brown, D. P.; Jiang, H.; Kauppinen, E. I. A novel aerosol method for single walled carbon nanotube synthesis. Chem. Phys. Lett. 2005, 402, 227–232.

33

Kresse, G.; Hafner, J. Norm-conserving and ultrasoft pseudopotentials for first row and transition elements. J. Phys. Condens. Matter. 1994, 6, 8245–8257.

34

Kohler, C.; Seifert, G.; Frauenheim, T. Magnetism and the potential energy hypersurfaces of Fe53 to Fe57. Comp. Mater. Sci. 2006, 35, 297–301.

35

Chen, Y. H.; Cao, D. B.; Yang, J.; Li, Y. W.; Wang, J. G.; Jiao, H. Density functional theory study of CO adsorption on the Fe (111) surface. Chem. Phys. Lett. 2004, 400, 35–41.

36

Sun, X.; Förster, S.; Li, Q. X.; Kurahashi, M.; Suzuki, T.; Zhang, J. W.; Yamauchi, Y.; Baum, G.; Steidl, H. Spin-polarization study of CO molecules adsorbed on Fe (110) using metastable-atom deexcitation spectroscopy and first-principles calculations. Phys. Rev. B 2007, 75, 035419.

37

Freund, H. J.; Roberts, M. W. Surface chemistry of carbon dioxide. Surf. Sci. Rep. 1996, 25, 225–273.

38

Henkelman, G.; Jonsson, H. Improved tangent estimate in the NEB method for finding minimum energy paths and saddle points. J. Chem. Phys. 2000, 113, 9978–9985.

39

Henkelman, G.; Uberuaga, B. P.; Jonsson, H. A climbing-image NEB method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

40

Jiang, D. E.; Carter, E. A. Carbon atom adsorption and diffusion into Fe (110) and Fe (100) from first principle. Phys. Rev. B 2005, 71, 045402.

41

Huo, C. F.; Ren, J.; Li, Y. W.; Wang, J.; Jiao, H. CO dissociation on clean and hydrogen precovered Fe (111) surfaces. J. Catal. 2007, 249, 174–184.

42

Liao, X. Y.; Cao, D. B.; Wang, S. G.; Ma, Z. Y.; Li, Y. W.; Wang, J. G.; Jiao, H. J. Density functional study of CO adsorption on the (100), (001), and (010) surface of Fe3C. J. Mol. Catal. A: Chem. 2007, 269, 169–178.

43

Nasibulin, A. G.; Pikhitsa, P. V.; Jiang, H.; Kauppinen, E. I. Correlation between catalyst particle and single-walled carbon nanotube diameters. Carbon 2005, 43, 2251–2257.

44

Jiang, D. E.; Carter, E. A. Adsorption and dissociation of CO on Fe (110) from first principle. Surf. Sci. 2004, 570, 167–177.

45

Sorescu, D. C.; Thompson, D. L.; Hurley, M. M.; Chabalowski, C. F. First-principles calculations of the adsorption, diffusion, and dissociation of a CO molecule on the Fe (100) surface. Phys. Rev. B 2002, 66, 035416.

46

Borthwick, D.; Fiorin, V.; Jenkins, S. J.; King, D. A. Facile dissociation of CO on Fe (211): Evidence from microcalorimetry and first-principles theory. Surf. Sci. 2008, 602, 2325–2332.

47

Colonna, S.; De Rossi, S.; Faticanti, M.; Pettiti, I.; Porta, P. XAS characterization and CO oxidation on zirconia-supported LaFeO3 perovskite. J. Mol. Catal. A: Chem. 2002, 187, 269–276.

48

Liu, Z. P.; Hu, P. An insight into alkali promotion: A density functional theory study of CO dissociation on K/Rh (111). J. Am. Chem. Soc. 2001, 123, 12596–12604.

49

Watanabe, M.; Kadowaki, T. Dissociation reactions of CO Gas on Fe and Fe3O4 surfaces observed by Raman-ellipsometry spectroscopy. Appl. Surf. Sci. 1987, 28, 147–166.

50

Whitman, L. J.; Richter, L. J.; Gurney, B. A.; Villarrubia, J. S.; Ho, W. Coadsorption site occupation on Fe (111) vs coverage and temperature: The kinetics of adsorption and reaction. J. Chem. Phys. 1989, 90, 2050–2062.

Nano Research
Pages 660-670
Cite this article:
Lanzani G, Nasibulin AG, Laasonen K, et al. CO Dissociation and CO+O Reactions on a Nanosized Iron Cluster. Nano Research, 2009, 2(8): 660-670. https://doi.org/10.1007/s12274-009-9069-9

655

Views

22

Downloads

40

Crossref

N/A

Web of Science

40

Scopus

0

CSCD

Altmetrics

Received: 09 April 2009
Revised: 24 May 2009
Accepted: 08 June 2009
Published: 01 August 2009
© Tsinghua University Press and Springer-Verlag 2009

This article is published with open access at Springerlink.com

Return