Sort:
Research Article Issue
Tailoring the Diameter of Single-Walled Carbon Nanotubes for Optical Applications
Nano Research 2011, 4 (8): 807-815
Published: 07 May 2011
Abstract PDF (1.4 MB) Collect
Downloads:18

Single-walled carbon nanotubes (SWCNTs) with specific diameters are required for various applications particularly in electronics and photonics, since the diameter is an essential characteristic determining their electronic and optical properties. In this work, the selective growth of SWCNTs with a certain mean diameter is achieved by the addition of appropriate amounts of CO2 mixed with the carbon source (CO) into the aerosol (floating catalyst) chemical vapor deposition reactor. The noticeable shift of the peaks in the absorption spectra reveals that the mean diameters of the as-deposited SWCNTs are efficiently altered from 1.2 to 1.9 nm with increasing CO2 concentration. It is believed that CO2 acts as an etching agent and can selectively etch small diameter tubes due to their highly curved carbon surfaces. Polymer-free as-deposited SWCNT films with the desired diameters are used as saturable absorbers after stamping onto a highly reflecting Ag-mirror using a simple dry-transfer technique. Sub-picosecond mode-locked fiber laser operations at ~1.56 μm and ~2 μm are demonstrated, showing improvements in the performance after the optimization of the SWCNT properties.

Research Article Issue
Low Temperature Growth of SWNTs on a Nickel Catalyst by Thermal Chemical Vapor Deposition
Nano Research 2011, 4 (4): 334-342
Published: 21 December 2010
Abstract PDF (1.4 MB) Collect
Downloads:18

Single-walled carbon nanotubes (SWNTs) have been grown on a silica-supported monometallic nickel (Ni) catalyst at temperatures ranging from as low as 450 ℃ to 800 ℃. Different spectroscopic techniques, such as Raman, photoluminescence emission (PLE), and ultra violet-visible-near infrared (UV-vis-NIR) absorption spectroscopy were used to evaluate the diameter and quality of the SWNTs grown over the Ni catalyst at different temperatures. The analysis revealed that high quality SWNTs with a very narrow diameter distribution were obtained at a growth temperature of 500 ℃. In the PLE and absorption spectra, differences were observed between the SWNTs grown on Ni and those grown on cobalt (Co). This result expands the potential of growing a specific (n, m) tube species with relatively high abundance by tuning the catalyst composition. Furthermore, the prerequisites for the low temperature growth of SWNTs over a monometallic transition metal catalyst have been elucidated.

Open Access Research Article Issue
CO Dissociation and CO+O Reactions on a Nanosized Iron Cluster
Nano Research 2009, 2 (8): 660-670
Published: 01 August 2009
Abstract PDF (2.3 MB) Collect
Downloads:22

Catalysis over metal nanoparticles is essential for the growth of carbon nanotubes and all the properties of the resulting nanotube, such as diameter and chirality, are affected by the metal particle. Thus, it is very important to understand the carbon chemistry taking place on nanometer size metal particles. Here we present the first ab initio computational study of chemical reactions on a nanosized iron cluster. The clusters have reaction sites, such as edges and vertexes between the facets, Which have not been studied before. First principles electronic structure calculations, fully incorporating the effects of spin polarization and non-collinear magnetic moments, have been used to investigate CO disproportionation on an isolated Fe55 cluster. After CO dissociation, O atoms remain on the surface while C atoms move into the cluster, presumably as the initial step toward carbide formation. Here we show that the lowest CO dissociation barrier found on the cluster (0.77 eV) is lower than on most previously studied Fe surfaces. This dissociation occurs on a vertex between the facets. Several possible paths for CO2 formation were identified. The calculated lowest reaction barrier is 1.08 eV, which is comparable to the barrier of 0.65 eV obtained by experiment.

Total 3