Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Conducting polymer actuators that can undergo complex and coordinated motions are generally obtained by using complex microfabrication methods to pattern several conducting polymer components. Herein, we describe a facile approach for fabricating electromagnetic synergetic actuators based on polypyrrole/Fe3O4 hybrid nanotube arrays. The actuator can perform biomimetic movements like arm-hand coordination. In this case, a magnetic field is used for primary actuation like an arm, i.e., large-scale angular movement, and an electric potential is used for secondary adjustment like a hand, i.e., small-scale angular movement.
Baughman, R. H. Playing nature's game with artificial muscles. Science 2005, 308, 63-65.
Jager, E. W. H.; Inganäs, O.; Lundstrom, I. Microrobots for micrometer-size objects in aqueous media: Potential tools for single-cell manipulation. Science 2000, 288, 2335-2338.
Jager, E. W. H.; Smela, E.; Inganäs, O. Microfabricating conjugated polymer actuators. Science 2000, 290, 1540-1545.
Smela, E. Conjugated polymer actuators for biomedical applications. Adv. Mater. 2003, 15, 481-494.
Pei, Q. B.; Inganäs, O. Conjugated polymers as smart materials, gas sensors and actuators using bending beams. Synth. Met. 1993, 57, 3730-3735.
Otero, T. F.; Cortes, M. T. Artificial muscles with tactile sensitivity. Adv. Mater. 2003, 15, 279-282.
Berdichevsky, Y.; Lo, Y. H. Polypyrrole nanowire actuators. Adv. Mater. 2006, 18, 122-125.
He, X. M.; Li, C.; Chen, F. G.; Shi, G. Q. Polypyrrole microtubule actuators for seizing and transferring micro-particles. Adv. Funct. Mater. 2007, 17, 2911-2917.
Huang, J. Y.; Quan, B. G.; Liu, M. J.; Wei, Z. X.; Jiang, L. Conducting polypyrrole conical nanocontainers: Formation mechanism and voltage switchable property. Macromol. Rapid Commun. 2008, 29, 1335-1340.
Baughman, R. H.; Cui, C.; Zakhidov, A. A.; Iqbal, Z.; Barisci, J. N.; Spinks, G. M.; Wallace, G. G.; Mazzoldi, A.; De Rossi, D.; Rinzler, A. G.; Jaschinski, O.; Roth, S.; Kertesz, M. Carbon nanotube actuators. Science 1999, 284, 1340-1344.
Hughes, M.; Spinks, G. M. Multiwalled carbon-nanotube actuators. Adv. Mater. 2005, 17, 443-446.
Aliev, A. E.; Oh, J. Y.; Kozlov, M. E.; Kuznetsov, A. A.; Fang, S. L.; Fonseca, A. F.; Ovalle, R.; Lima, M. D.; Haque, M. H.; Gartstein, Y. N.; Zhang, M.; Zakhidov, A. A.; Baughman, R. H. Giant-stroke, superelastic carbon nanotube aerogel muscles. Science 2009, 323, 1575-1578.
Fukushima, T.; Asaka, K.; Kosaka, A.; Aida, T. Fully plastic actuator through layer-by-layer casting with ionic-liquid-based bucky gel. Angew. Chem. Int. Ed. 2005, 44, 2410-2413.
Gu, G.; Schmid, M.; Chiu, P. W.; Minett, A.; Fraysse, J.; Kim, G. T.; Roth, S.; Kozlov, M.; Muñoz, E.; Baughman, R. H. V2O5 nanofibre sheet actuators. Nat. Mater. 2003, 2, 316-319.
Lendlein, A.; Kelch, S. Shape-memory polymers. Angew. Chem. Int. Ed. 2002, 41, 2034-2057.
Ha, S. M.; Yuan, W.; Pei, Q. B.; Pelrine, R.; Stanford, S. Interpenetrating polymer networks for high-performance electroelastomer artificial muscles. Adv. Mater. 2006, 18, 887-891.
Pelrine, R.; Kornbluh, R.; Kofod, G., High-strain actuator materials based on dielectric elastomers. Adv. Mater. 2000, 12, 1223-1225.
Pelrine, R.; Kornbluh, R.; Pei, Q. B.; Joseph, J. High-speed electrically actuated elastomers with strain greater than 100%. Science 2000, 287, 836-839.
Pei, Q. B.; Inganäs, O. Electrochemical applications of the bending beam method. 1. Mass-transport and volume changes in polypyrrole during redox. J. Phys. Chem. 1992, 96, 10507-10514.
Pei, Q. B.; Inganäs, O. Electrochemical applications of the bending beam method. 2. Electroshrinking and slow relaxation in polypyrrole. J. Phys. Chem. 1993, 97, 6034-6041.
John, R.; Wallace, G. G. Doping dedoping of polypyrrole—a study using current-measuring and resistance-measuring techniques. J. Electroanal. Chem. 1993, 354, 145-160.
Smela, E.; Gadegaard, N. Surprising volume change in PPy(DBS): An atomic force microscopy study. Adv. Mater. 1999, 11, 953-957.
Baughman, R. H. Conducting polymer artificial muscles. Synth. Met. 1996, 78, 339-353.
Gomez-Romero, P. Hybrid organic-inorganic materials—In search of synergic activity. Adv. Mater. 2001, 13, 163-174.
Chen, C. C.; Bose, C. S. C.; Rajeshwar, K. The reduction of dioxygen and the oxidation of hydrogen at polypyrrole film electrodes containing nanodispersed platinum particles. J. Electroanal. Chem. 1993, 350, 161-176.
Xu, J. J.; Hu, J. C.; Quan, B. G.; Wei, Z. X. Decorating polypyrrole nanotubes with Au nanoparticles by an in situ reduction process. Macromol. Rapid Commun. 2009, 30, 936-940.
Matsumra, M.; Ohno, T.; Saito, S.; Ochi, M. Photocatalytic electron and proton pumping across conducting polymer films loaded with semiconductor particles. Chem. Mater. 1996, 8, 1370-1374.
Matsumura, M.; Ohno, T. Concerted transport of electrons and protons across conducting polymer membranes. Adv. Mater. 1997, 9, 357-359.
Xu, J. J.; Hu, J. C.; Liu, X. F.; Qiu, X. H.; Wei, Z. X. Stepwise self-assembly of P3HT/CdSe hybrid nanowires with enhanced photoconductivity. Macromol. Rapid Commun. 2009, 30, 1419-1423.
Han, G. Y.; Shi, G. Q. Electrochemical actuator based on single-layer polypyrrole film. Sensor. Actuat. B-Chem. 2006, 113, 259-264.
Han, G. Y.; Shi, G. Q. High-response tri-layer electrochemical actuators based on conducting polymer films. J. Electroanal. Chem. 2004, 569, 169-174.
796
Views
37
Downloads
28
Crossref
N/A
Web of Science
29
Scopus
0
CSCD
Altmetrics
This article is published with open access at Springerlink.com
This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.