Graphical Abstract

Conducting polymer actuators that can undergo complex and coordinated motions are generally obtained by using complex microfabrication methods to pattern several conducting polymer components. Herein, we describe a facile approach for fabricating electromagnetic synergetic actuators based on polypyrrole/Fe3O4 hybrid nanotube arrays. The actuator can perform biomimetic movements like arm-hand coordination. In this case, a magnetic field is used for primary actuation like an arm, i.e., large-scale angular movement, and an electric potential is used for secondary adjustment like a hand, i.e., small-scale angular movement.
Baughman, R. H. Playing nature's game with artificial muscles. Science 2005, 308, 63-65.
Jager, E. W. H.; Inganäs, O.; Lundstrom, I. Microrobots for micrometer-size objects in aqueous media: Potential tools for single-cell manipulation. Science 2000, 288, 2335-2338.
Jager, E. W. H.; Smela, E.; Inganäs, O. Microfabricating conjugated polymer actuators. Science 2000, 290, 1540-1545.
Smela, E. Conjugated polymer actuators for biomedical applications. Adv. Mater. 2003, 15, 481-494.
Pei, Q. B.; Inganäs, O. Conjugated polymers as smart materials, gas sensors and actuators using bending beams. Synth. Met. 1993, 57, 3730-3735.
Otero, T. F.; Cortes, M. T. Artificial muscles with tactile sensitivity. Adv. Mater. 2003, 15, 279-282.
Berdichevsky, Y.; Lo, Y. H. Polypyrrole nanowire actuators. Adv. Mater. 2006, 18, 122-125.
He, X. M.; Li, C.; Chen, F. G.; Shi, G. Q. Polypyrrole microtubule actuators for seizing and transferring micro-particles. Adv. Funct. Mater. 2007, 17, 2911-2917.
Huang, J. Y.; Quan, B. G.; Liu, M. J.; Wei, Z. X.; Jiang, L. Conducting polypyrrole conical nanocontainers: Formation mechanism and voltage switchable property. Macromol. Rapid Commun. 2008, 29, 1335-1340.
Baughman, R. H.; Cui, C.; Zakhidov, A. A.; Iqbal, Z.; Barisci, J. N.; Spinks, G. M.; Wallace, G. G.; Mazzoldi, A.; De Rossi, D.; Rinzler, A. G.; Jaschinski, O.; Roth, S.; Kertesz, M. Carbon nanotube actuators. Science 1999, 284, 1340-1344.
Hughes, M.; Spinks, G. M. Multiwalled carbon-nanotube actuators. Adv. Mater. 2005, 17, 443-446.
Aliev, A. E.; Oh, J. Y.; Kozlov, M. E.; Kuznetsov, A. A.; Fang, S. L.; Fonseca, A. F.; Ovalle, R.; Lima, M. D.; Haque, M. H.; Gartstein, Y. N.; Zhang, M.; Zakhidov, A. A.; Baughman, R. H. Giant-stroke, superelastic carbon nanotube aerogel muscles. Science 2009, 323, 1575-1578.
Fukushima, T.; Asaka, K.; Kosaka, A.; Aida, T. Fully plastic actuator through layer-by-layer casting with ionic-liquid-based bucky gel. Angew. Chem. Int. Ed. 2005, 44, 2410-2413.
Gu, G.; Schmid, M.; Chiu, P. W.; Minett, A.; Fraysse, J.; Kim, G. T.; Roth, S.; Kozlov, M.; Muñoz, E.; Baughman, R. H. V2O5 nanofibre sheet actuators. Nat. Mater. 2003, 2, 316-319.
Lendlein, A.; Kelch, S. Shape-memory polymers. Angew. Chem. Int. Ed. 2002, 41, 2034-2057.
Ha, S. M.; Yuan, W.; Pei, Q. B.; Pelrine, R.; Stanford, S. Interpenetrating polymer networks for high-performance electroelastomer artificial muscles. Adv. Mater. 2006, 18, 887-891.
Pelrine, R.; Kornbluh, R.; Kofod, G., High-strain actuator materials based on dielectric elastomers. Adv. Mater. 2000, 12, 1223-1225.
Pelrine, R.; Kornbluh, R.; Pei, Q. B.; Joseph, J. High-speed electrically actuated elastomers with strain greater than 100%. Science 2000, 287, 836-839.
Pei, Q. B.; Inganäs, O. Electrochemical applications of the bending beam method. 1. Mass-transport and volume changes in polypyrrole during redox. J. Phys. Chem. 1992, 96, 10507-10514.
Pei, Q. B.; Inganäs, O. Electrochemical applications of the bending beam method. 2. Electroshrinking and slow relaxation in polypyrrole. J. Phys. Chem. 1993, 97, 6034-6041.
John, R.; Wallace, G. G. Doping dedoping of polypyrrole—a study using current-measuring and resistance-measuring techniques. J. Electroanal. Chem. 1993, 354, 145-160.
Smela, E.; Gadegaard, N. Surprising volume change in PPy(DBS): An atomic force microscopy study. Adv. Mater. 1999, 11, 953-957.
Baughman, R. H. Conducting polymer artificial muscles. Synth. Met. 1996, 78, 339-353.
Gomez-Romero, P. Hybrid organic-inorganic materials—In search of synergic activity. Adv. Mater. 2001, 13, 163-174.
Chen, C. C.; Bose, C. S. C.; Rajeshwar, K. The reduction of dioxygen and the oxidation of hydrogen at polypyrrole film electrodes containing nanodispersed platinum particles. J. Electroanal. Chem. 1993, 350, 161-176.
Xu, J. J.; Hu, J. C.; Quan, B. G.; Wei, Z. X. Decorating polypyrrole nanotubes with Au nanoparticles by an in situ reduction process. Macromol. Rapid Commun. 2009, 30, 936-940.
Matsumra, M.; Ohno, T.; Saito, S.; Ochi, M. Photocatalytic electron and proton pumping across conducting polymer films loaded with semiconductor particles. Chem. Mater. 1996, 8, 1370-1374.
Matsumura, M.; Ohno, T. Concerted transport of electrons and protons across conducting polymer membranes. Adv. Mater. 1997, 9, 357-359.
Xu, J. J.; Hu, J. C.; Liu, X. F.; Qiu, X. H.; Wei, Z. X. Stepwise self-assembly of P3HT/CdSe hybrid nanowires with enhanced photoconductivity. Macromol. Rapid Commun. 2009, 30, 1419-1423.
Han, G. Y.; Shi, G. Q. Electrochemical actuator based on single-layer polypyrrole film. Sensor. Actuat. B-Chem. 2006, 113, 259-264.
Han, G. Y.; Shi, G. Q. High-response tri-layer electrochemical actuators based on conducting polymer films. J. Electroanal. Chem. 2004, 569, 169-174.