In the long history of traditional Chinese medicine (TCM), meridians play essential roles as the critical network to regulate the normal physiological functions of the human body. They are regarded to be the channels connecting the internal organs with the body surface and various parts of the body. Although there are many studies and doctrines trying to reveal the nature of meridians for their validation in TCM, the mechanism underlying the meridians remains unclear. Herein, based on our macroscopic quantum state concept of ion channels (i.e., sub-nanometer scale channels), we propose a quantum principle of meridians. The acupoints and organ symptom are in a macroscopic coherence state of the ion channels in meridians. By applying TCM treatments (e.g., TCM massage, acupuncture, moxibustion, and electroacupuncture) on the acupoint, the corresponding organ symptom could be well regulated with help of quantum meridian state.
- Article type
- Year
- Co-author
A large amount of progress has achieved in neuroscience, however, there is still a lack of reasonable model for the storage/output (S/O) of life information. The cyclical motion of cardio- and pulmonary-myocyte is a typical process of the life information S/O, while the opening and closing sites of Ca2+ ion channels during the motion can form a genetically programmed time-dependent three-dimensional (3D) pattern. Those phenomena indicate a strong correlation of the information S/O model of these myocytes with the time-sequence 3D patterns. Therefore, based on the time-dependent Ca2+ fluorescence imaging during the motion of cardio- and pulmonary-myocyte, here we suggest a four-dimensional (4D) code of information S/O model in cell and nervous system. Further from the fact of pulmonary myocyte motion able to be controlled by brain, it is deduced that the 4D code in brain has a role of controlling muscles through a pathway of the central nervous system, peripheral nervous system, neuromuscular junction, and muscle cells. In addition, we also suggested the 4D code of non-innate skill that can be programmed by the learning/training of a long time (~ 3 years), such as walking, writing, painting, sports, speech, singing, and dancing. Noticeably, this 4D S/O model is reasonable for the ultralow energy consumption of life information transmission.
Life systems show an ultralow energy consumption in their high-efficiency bio-activities, implying a high-flux transport of ions and molecules with an ultralow resistivity. A collective motion (CM) of these particles is necessary for this kind of behaviors, different from the traditional Newtonian diffusion. The CM is an ordered particle state, resulting from the balance between attraction and repulsion of the particles, in which the attraction is a necessary condition. The ultralow resistivity of electronic or atomic fluid at low temperature is already described phenomenologically by introducing the interparticle attraction. Here, we try to establish a phenomenological expression for the quantum state of ion or molecule CM at ambient temperature, by also considering the attraction of particles. These studies suggest that the Bose-Einstein condensate potentially exists widely.
Biology systems harvest solar energy to regulate ions and molecules precisely across cell membrane that is essential to maintain their life sustainability. Recently, artificial light-driven directional ion transport through graphene oxide membranes has been established, where the membrane converts light power into a transmembrane motive force. Herein, we report a silver nanoparticles decorated graphene oxide membranes for enhanced photo-driven ionic transport. Asymmetric light stimulated charge carrier dynamics, such as advanced light absorption efficiency, extended lifetime and efficient separation of photo-excited charge carriers, are account for the ion-driven force enhancement. Based on metal nanoparticles decoration, the concept of the guest-interactions of plasmon-enhanced photo-driven ion transport in two-dimentional layered membranes will stimulate broad researches in sensing, energy storage and conversion and water treatment.
Biochemical reactions in vivo occur at the temperature usually lower than that in vitro, however the underlying mechanism still remains a challenge. Inspired by our recent studies of adenosine triphosphate (ATP) releasing photons to resonantly drive DNA replication in a quantum way, we propose a quantized chemical reaction driven by multiple mid-infrared (MIR) photons. The space confinement effect of enzymes on a reactant molecule increases the lifetime of excitation state of its bond vibration, providing a chance for the bond to resonantly absorb multiple photons. Although the energy of each MIR photon is significantly lower than that of chemical bond, the resonant absorption of multiple photons can break the appointed bond of confined molecules. Different from the traditional thermochemistry and photochemistry, the quantized chemical reactions could have a high energy efficiency and ultrahigh selectivity. In addition, we also suggest a quantum driving source for our quantum-confined superfluid reactions proposed previously. The quantized chemical reaction resonantly driven by multiple MIR photons holds great promise to develop novel approaches for the chemical engineering in future.
Biologically, there exist two kinds of syntheses: photosynthesis and ATP-driven biosynthesis. The light harvesting of photosynthesis is known to achieve an efficiency of ~ 95% by the quantum energy transfer of photons. However, how the ATP-driven biosynthesis reaches its high efficiency still remains unknown. Deoxynucleotide triphosphates (dNTPs) in polymerase chain reaction (PCR) adopt the identical way of ATP to release their energy, and thus can be employed to explore the ATP energy process. Here, using a gold nanoparticle (AuNP) enhanced PCR (AuNP-PCR), we demonstrate that the energy released by phosphoanhydride-bond (PB) hydrolysis of dNTPs is in form of photons (PB-photons) to drive DNA replication, by modulating their resonance with the average inter-AuNP distance (D). The experimental results show that both the efficiency and yield of PCR periodically oscillate with D increasing, indicating a quantized process, but not simply a thermal one. The PB-photon wavelength is further determined to 8.4 μm. All these results support that the release, transfer and utilization of bioenergy are in the form of photons. Our findings of ATP-energy quantum conversion will open a new avenue to the studies of high-efficiency bioenergy utilization, biochemistry, biological quantum physics, and even brain sciences.
Multiphase catalysis is used in many industrial processes; however, the reaction rate can be restricted by the low accessibility of gaseous reactants to the catalysts in water, especially for oxygen-dependent biocatalytic reactions. Despite the fact that solubility and diffusion rates of oxygen in many liquids (such as perfluorocarbon) are much higher than in water, multiphase reactions with a second liquid phase are still difficult to conduct, because the interaction efficiency between immiscible phases is extremely low. Herein, we report an efficient triphase biocatalytic system using oil core-silica shell oxygen nanocarriers. Such design offers the biocatalytic system an extremely large water-solid-oil triphase interfacial area and a short path required for oxygen diffusion. Moreover, the silica shell stabilizes the oil nanodroplets in water and prevents their aggregation. Using oxygen-dependent oxidase enzymatic reaction as an example, we demonstrate this efficient biocatalytic system for the oxidation of glucose, choline, lactate, and sucrose by substituting their corresponding oxidase counterparts. A rate enhancement by a factor of 10-30 is observed when the oxygen nanocarriers are introduced into reaction system. This strategy offers the opportunity to enhance the efficiency of other gaseous reactants involved in multiphase catalytic reactions.
We propose a process of quantum-confined ion superfluid (QISF), which is enthalpy-driven confined ordered fluid, to explain the transmission of nerve signals. The ultrafast Na+ and K+ ions transportation through all sodium-potassium pump nanochannels simultaneously in the membrane is without energy loss, and leads to QISF wave along the neuronal axon, which acts as an information medium in the ultrafast nerve signal transmission. The QISF process will not only provide a new view point for a reasonable explanation of ultrafast signal transmission in the nerves and brain, but also challenge the theory of matter wave for ions, molecules and particles.
The cooperative interaction distance measure has been proposed as a novel law pertaining to dialectics of nature, and has been extensively carried out in the design of functional nanomaterials. However, the temporal and spatial dimensions are akin to yin and yang, and thus temporal regulation needs to be accounted for when implementing the above-mentioned principle. Here, we summarize recent advances in temporally and spatially regulated materials and devices. We showcase the temporal regulation of organic semiconductors for organic photovoltaics (OPVs) using the example of exciton lifetime manipulation. As an example of spatial regulation, we consider the distribution of charge carriers in core–shell quantum dot (QD) nanocrystals for modulating their optical properties. Long exciton lifetime can in principle increase the exciton diffussion length, which is desiable for high-efficiency large-area OPV devices. Spatially regulated QDs are highly valuable emitters for light-emitting applications. We aim to show that cooperative spatio-temporal regulation of nanomaterils is of vital importance to the development of functional devices.
With the increasing requirements of reliable and environmentally friendly energy resources, porous materials for sustainable energy conversion technologies have attracted intensive interest in the past decades. As an important block of porous materials, biomimetic smart nanochannels (BSN) have been developed rapidly into an attractive field for their well-tunable geometry and chemistry. With inspiration from nature, many works have been reported to utilize BSN to harvest clean energy. In this review, we summarize recent progress in the BSN for power harvesting from four parts of brief introduction of BSN, biological prototypes for power harvesting, BSN-based energy conversion, and conclusion and outlook. Overall, by learning from nature, exploiting new avenues and improving the performance of BSN, a number of exciting developments in the near future may be anticipated.