AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Low Temperature Growth of SWNTs on a Nickel Catalyst by Thermal Chemical Vapor Deposition

Maoshuai He1( )Alexander I. Chernov2Elena D. Obraztsova2Jani Sainio3Emma Rikkinen1Hua Jiang4Zhen Zhu4Antti Kaskela4Albert G. Nasibulin4Esko I. Kauppinen4,5( )Marita Niemelä1Outi Krause1
Department of Biotechnology and Chemical TechnologySchool of Science and TechnologyAalto University, P.O. Box 16100, FI-00076, AaltoFinland
A.M. Prokhorov General Physics Institute RAS 38 Vavilov Street 119991 Moscow Russia
Department of Applied PhysicsSchool of Science and TechnologyAalto University, P.O. Box 11100, FI-00076, AaltoFinland
Nanomaterials GroupDepartment of Applied Physics and Center for New MaterialsSchool of Science and TechnologyAalto University, P.O. Box 15100, FI-00076, AaltoFinland
VTT Biotechnology, P.O. Box 1000FI-02044, EspooFinland
Show Author Information

Graphical Abstract

Abstract

Single-walled carbon nanotubes (SWNTs) have been grown on a silica-supported monometallic nickel (Ni) catalyst at temperatures ranging from as low as 450 ℃ to 800 ℃. Different spectroscopic techniques, such as Raman, photoluminescence emission (PLE), and ultra violet-visible-near infrared (UV-vis-NIR) absorption spectroscopy were used to evaluate the diameter and quality of the SWNTs grown over the Ni catalyst at different temperatures. The analysis revealed that high quality SWNTs with a very narrow diameter distribution were obtained at a growth temperature of 500 ℃. In the PLE and absorption spectra, differences were observed between the SWNTs grown on Ni and those grown on cobalt (Co). This result expands the potential of growing a specific (n, m) tube species with relatively high abundance by tuning the catalyst composition. Furthermore, the prerequisites for the low temperature growth of SWNTs over a monometallic transition metal catalyst have been elucidated.

References

1

Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603-605.

2

Bethune, D. S.; Klang, C. H.; de Vries, M. S.; Gorman, G.; Savoy, R.; Vazquez, J.; Beyes, R. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 1993, 363, 605-607.

3

Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47-99.

4

Guo, T.; Nikolaev, P.; Thess, A.; Colbert, D. T.; Smalley, R. E. Catalytic growth of single-walled nanotubes by laser vaporization. Chem. Phys. Lett. 2004, 243, 49-54.

5

Kong, J.; Cassell, A. M.; Dai, H. J. Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem. Phys. Lett. 1998, 292, 567-574.

6

Hirsch, A. Growth of single-walled carbon nanotubes without a metal catalyst—a surprising discovery. Angew. Chem. Int. Ed. 2009, 48, 5403-5404.

7

Bachilo, S. M.; Balzano, L.; Herrera, J. E.; Pompeo, F.; Resasco, D. E.; Weisman, R. B. Narrow (n, m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst. J. Am. Chem. Soc. 2003, 125, 11186-11187.

8

Li, X. J.; Tu, X. M.; Zaric, S.; Welsher, K.; Seo, W. S.; Zhao, W.; Dai, H. J. Selective synthesis combined with chemical separation of single-walled carbon nanotubes for chirality selection. J. Am. Chem. Soc. 2007, 129, 15770-15771.

9

Maruyama, S.; Miyauchi, Y.; Murakami, Y.; Chiashi, S. Optical characterization of single-walled carbon nanotubes synthesized by catalytic decomposition of alcohol. New J. Phys. 2003, 5, 149.

10

He, M. S.; Chernov, A. I.; Obraztsova, E. D.; Sainio, J.; Rikkinen, E.; Zhu, Z.; Jiang, H.; Kauppinen, E. I.; Niemelä, M.; Krause, A. O. I. Predominant growth of (6, 5) single-walled carbon nanotubes on a copper promoted iron catalyst. J. Am. Chem. Soc. 2010, 132, 13994-13996.

11

Li, N.; Wang, X. M.; Ren, F.; Haller, G.; Pfefferle, L. D. Nanotubes with reaction temperature using a Co monometallic catalyst. J. Phys. Chem. C 2009, 113, 10070-10078.

12

He, M. S.; Chernol, A. I.; Fedotov, P. V.; Obraztsova, E. D.; Rikkinen, E.; Zhu, Z.; Sainio, J.; Jiang, H.; Nasibulin, A. G.; Kauppinen, E. I.; Niemelä, M.; Krause, A. O. I. Selective growth of SWNTs on partially reduced monometallic cobalt catalyst. Chem. Comm. 2011, DOI: 10.1039/C0CC02751K.

13

Li, Y. M.; Mann, D.; Rolandi, M.; Kim, W.; Ural, A.; Hung, S.; Javey, A.; Cao, J.; Wang, D. W.; Yenilmez, E.; Wang, Q.; Yenilmez, J. F.; Nishi, Y.; Dai, H. J. Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method. Nano. Lett. 2004, 4, 317-321.

14

Min, Y. S.; Bae, E. J.; Oh, B. S.; Kang, D. H.; Park, W. J. Low-temperature growth of single-walled carbon nanotubes by water plasma chemical vapor deposition. J. Am. Chem. Soc. 2005, 127, 12498-12499.

15

Cantoro, M.; Hofmann, S.; Pisana, S.; Scardaci, V.; Parvez, A.; Ducati, C.; Ferrari, A. C.; Blackburn, A. M.; Wang, K. Y.; Robertson, J. Catalytic chemical vapor deposition of single-wall carbon nanotubes at low temperatures. Nano. Lett. 2006, 6, 1107-1112.

16

Kim, M. S.; Rodriguez, N. M.; Baker, R. T. K. Role of interfacial phenomena in the structure of carbon deposits. J. Catal. 1992, 134, 253-268.

17

Boelland, E.; de Box, P. K.; Knock, A. I. J. M.; Geus, J. W. The formation of filamentous carbon on iron and nickel catalysts: III. Morphology. J. Catal. 1985, 96, 481-490.

18

Ziebro, J.; Lukasiewicz, I.; Borowiak-Palen, E.; Michalkiewicz, B. Low temperature growth of carbon nanotubes from methane catalytic decomposition over nickel supported on a zeolite. Nanotechnology 2010, 21, 145308.

19

Lindblad, M.; Lindfors, L. P.; Suntola, T. Preparation of Ni/A12O3 catalysts from vapor phase by atomic layer epitaxy. Catal. Lett. 1994, 27, 323-336.

20

Zielinski, J. Reducibility of silica supported nickel oxide. Catal. Lett. 1995, 31, 47-56.

21
Chastain, J. (Ed) Handbook of X-Ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Minnesota, 1992.
22

Grosvenor, A. P.; Biesinger, M. C.; Smart, R. C.; McIntyre, N. S. New interpretations of XPS spectra of nickel metal and oxides. Surf. Sci. 2006, 600, 1771-1779.

23

Bandow, S.; Asaka, S.; Saito, Y.; Rao, A. M.; Grigorian, L.; Richter, E.; Eklund, P. C. Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes. Phys. Rev. Lett. 1998, 80, 3779-3782.

24

Tan, P. H.; Rozhin, A. G.; Hasan, T.; Hu, P.; Scardaci, V.; Milne, W. I.; Ferrari, A. C. Photoluminescence spectroscopy of carbon nanotube bundles: Evidence for exciton energy transfer. Phys. Rev. Lett. 2007, 99, 137402.

25

Chernov, A. I.; Obraztsova, E. D. Photoluminescence of single-wall carbon nanotube films. Phys. Status. Solidi. B 2010, 247, 2805-2809.

26

Wang, Q.; Ng, M. F.; Yang, S. W.; Yang, Y. H.; Chen, Y. The mechanism of single-walled carbon nanotube growth and chirality selection induced by carbon atom and dimer addition. ACS. Nano 2010, 4, 939-946.

27

Chiang, W. H.; Sankaran, R. M. Linking catalyst composition to chirality distributions of as-grown single-walled carbon nanotubes by tuning NixFe1-x nanoparticles. Nat. Mater. 2009, 8, 882-886.

28

Lim, S. Y.; Wang, C.; Yang, Y. H.; Ciuparu, D.; Pfefferle, L.; Haller, G. L. Evidence for anchoring and partial occlusion of metallic clusters on the pore walls of MCM-41 and effect on the stability of the metallic clusters. Catal. Today 2007, 123, 122-132.

29

Bonneviot, L.; Che, M.; Olivier, D.; Martin, G. A.; Freund, E. Electron microscopy and magnetic studies of the interaction between nickel and silica: Considerations on possible anchoring sites. J. Phys. Chem. 1986, 90, 2112-2117.

30

Wang, B.; Yang, Y. H.; Li, L. J.; Chen, Y. Effect of different catalyst supports on the (n, m) selective growth of single-walled carbon nanotube from Co-Mo catalyst. J. Mater. Sci. 2009, 44, 3285-3295.

31

Zhang, G. Y.; Mann, D.; Zhang, L.; Javey, A.; Li, Y. M.; Yenilmenz, E.; Wang, Q.; McVittie, J.; Nishi, Y.; Gibbons, J.; Dai, H. Ultra-high-yield growth of vertical single-walled carbon nanotubes: Hidden roles of hydrogen and oxygen. P. Natl. Acad. Sci. USA 2005, 102, 16141-16145.

Nano Research
Pages 334-342
Cite this article:
He M, Chernov AI, Obraztsova ED, et al. Low Temperature Growth of SWNTs on a Nickel Catalyst by Thermal Chemical Vapor Deposition. Nano Research, 2011, 4(4): 334-342. https://doi.org/10.1007/s12274-010-0088-3

665

Views

49

Crossref

N/A

Web of Science

52

Scopus

0

CSCD

Altmetrics

Received: 24 September 2010
Revised: 02 November 2010
Accepted: 28 November 2010
Published: 21 December 2010
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010
Return