AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Layer-by-Layer Removal of Insulating Few-Layer Mica Flakes for Asymmetric Ultra-Thin Nanopore Fabrication

Jun Gao1Wei Guo1( )Hua Geng1Xu Hou1Zhigang Shuai2Lei Jiang1,3( )
Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of SciencesBeijing 100190 China
Department of Chemistry Tsinghua UniversityBeijing 100084 China
School of Chemistry and Environment Beihang UniversityBeijing 100191 China
Show Author Information

Graphical Abstract

Abstract

We demonstrate an elaborate method to controllably fabricate ultra-thin nanopores by layer-by-layer removal of insulating few-layer mica flakes with atomic force microscopy (AFM). The fabricated nanopores are geometrically asymmetric, like an inverted quadrangular frustum pyramid. The nanopore geometry can be engineered by finely tuning the mechanical load on the AFM tip and the scanning area. Particularly noteworthy is that the nanopores can also be fabricated in suspended few-layer mica membranes on a silicon window, and may find potential use as functional components in nanofluidic devices.

Electronic Supplementary Material

Download File(s)
nr-5-2-99_ESM.pdf (717.4 KB)

References

1

Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.

2

Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun'ko Y. K. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568.

3

Koh, Y. K.; Bae, M. H.; Cahill, D. G.; Pop, E. Reliably counting atomic planes of few-layer graphene (n > 4). ACS Nano 2011, 5, 269–274.

4

Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568–571.

5

Caseri, W. R.; Shelden, R. A.; Suter, U. W. Preparation of muscovite with ultrahigh specific surface-area by chemical cleavage. Colloid Polym. Sci. 1992, 270, 392–398.

6

Maslova, M. V.; Gerasimova, L. G.; Forsling, W. Surface properties of cleaved mica. Colloid J. 2004, 66, 322–328.

7

Jin, P.; Mukaibo, H.; Horne, L. P.; Bishop, G. W.; Martin, C. R. Electroosmotic flow rectification in pyramidal-pore mica membranes. J. Am. Chem. Soc. 2010, 132, 2118–2119.

8

Augustin, L.; Chi, L. F.; Fuchs, H.; Hoppner, S.; Rakers, S.; Rothig, C.; Schwaack, T.; Starrberg, F. Preparation and characterization of low-dimensional nanostructures. Appl. Surf. Sci. 1999, 141, 219–227.

9

Lui, C. H.; Liu, L.; Mak, K. F.; Flynn, G. W.; Heinz, T. F. Ultraflat graphene. Nature 2009, 462, 339–341.

10

Singh, M.; Kaur, N.; Singh, L. Morphology of heavy ions irradiated mica. Radiat. Phys. Chem. 2010, 79, 1180–1188.

11

Xu, K.; Cao, P. G.; Heath, J. R. Graphene visualizes the first water adlayers on mica at ambient conditions. Science 2010, 329, 1188–1191.

12

Downs, R. T.; Hall-Wallace, M. The American Mineralogist Crystal Structure Database. Am Mineral. 2003, 88, 247–250.

13

Castellanos-Gomez, A.; Wojtaszek, M.; Tombros, N.; Agraït, N.; van Wees, B. J.; Rubio-Bollinger, G. Atomically thin mica flakes and their application as ultrathin insulating substrates for graphene. Small 2011, 7, 2491–2497.

14

Garaj, S.; Hubbard, W.; Reina, A.; Kong, J.; Branton, D.; Golovchenko, J. A. Graphene as a subnanometre trans-electrode membrane. Nature 2010, 467, 190–193.

15

Branton, D.; Deamer, D. W.; Marziali, A.; Bayley, H.; Benner, S. A.; Butler, T.; Di Ventra, M.; Garaj, S.; Hibbs, A.; Huang, X. H. et al. The potential and challenges of nanopore sequencing. Nat. Biotechnol. 2008, 26, 1146–1153.

16

Schneider, G. F.; Kowalczyk, S. W.; Calado, V. E.; Pandraud, G.; Zandbergen, H. W.; Vandersypen, L. M. K.; Dekker, C. DNA translocation through graphene nanopores. Nano Lett. 2010, 10, 3163–3167.

17

Merchant, C. A.; Healy, K.; Wanunu, M.; Ray, V.; Peterman, N.; Bartel, J.; Fischbein, M. D.; Venta, K.; Luo, Z. T.; Johnson, A. T. et. al. DNA translocation through graphene nanopores. Nano Lett. 2010, 10, 2915–2921.

18

Howorka, S.; Siwy, Z. Nanopore analytics: Sensing of single molecules. Chem. Soc. Rev. 2009, 38, 2360–2384.

19

Mulero, R.; Prabhu, A. S.; Freedman, K. J.; Kim, M. J. Nanopore-based devices for bioanalytical applications. JALA 2010, 15, 243–252.

20

Vlassiouk, I.; Apel, P. Y.; Dmitriev, S. N.; Healy, K.; Siwy, Z. S. Versatile ultrathin nanoporous silicon nitride membranes. Proc. Natl. Acad. Sci. USA 2009, 106, 21039–21044.

21

Wanunu, M.; Dadosh, T.; Ray, V.; Jin, J. M.; McReynolds, L.; Drndic, M. Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nat. Nanotechnol. 2010, 5, 807–814.

22

Deamer, D. W.; Branton, D. Characterization of nucleic acids by nanopore analysis. Accounts. Chem. Res. 2002, 35, 817–825.

23

Li, J.; Stein, D.; McMullan, C.; Branton, D.; Aziz, M. J.; Golovchenko, J. A. Ion-beam sculpting at nanometre length scales. Nature 2001, 412, 166–169.

24

Dekker, C. Solid-state nanopores. Nat. Nanotechnol. 2007, 2, 209–215.

25

Striemer, C. C.; Gaborski, T. R.; McGrath, J. L.; Fauchet, P. M. Charge- and size-based separation of macromolecules using ultrathin silicon membranes. Nature 2007, 445, 749–753.

26

Storm, A. J.; Chen, J. H.; Ling, X. S.; Zandbergen, H. W.; Dekker, C. Fabrication of solid-state nanopores with single-nanometre precision. Nat. Mater. 2003, 2, 537–540.

27

Zwolak, M.; Di Ventra, M. Colloquium: Physical approaches to DNA sequencing and detection. Rev. Mod. Phys. 2008, 80, 141–165.

28

Bayley, H.; Cremer, P. S. Stochastic sensors inspired by biology. Nature 2001, 413, 226–230.

29

Stoddart, D.; Maglia, G.; Mikhailova, E.; Heron, A. J.; Bayley, H. Multiple base-recognition sites in a biological nanopore: Two heads are better than one. Angew. Chem. Int. Edit. 2010, 49, 556–559.

30

Stoddart, D.; Heron, A. J.; Mikhailova, E.; Maglia, G.; Bayley, H. Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore. Proc. Natl. Acad. Sci. USA 2009, 106, 7702–7707.

31

Butler, T. Z.; Pavlenok, M.; Derrington, I. M.; Niederweis, M.; Gundlach, J. H. Single-molecule DNA detection with an engineered MSPA protein nanopore. Proc. Natl. Acad. Sci. USA 2008, 105, 20647–20652.

32

Derrington, I. M.; Butler, T. Z.; Collins, M. D.; Manrao, E.; Pavlenok, M.; Niederweis, M.; Gundlach, J. H. Nanopore DNA sequencing with MSPA. Proc. Natl. Acad. Sci. USA 2010, 107, 16060–16065.

33

Siwy, Z. S.; Howorka, S. Engineered voltage-responsive nanopores. Chem. Soc. Rev. 2010, 39, 1115–1132.

34

Bocquet, L.; Charlaix, E. Nanofluidics, from bulk to interfaces. Chem. Soc. Rev. 2010, 39, 1073–1095.

35

Xia, F.; Guo, W.; Mao, Y. D.; Hou, X.; Xue, J. M.; Xia, H. W.; Wang, L.; Song, Y. L.; Ji, H.; Ouyang, Q. et al. Gating of single synthetic nanopores by proton-driven DNA molecular motors. J. Am. Chem. Soc. 2008, 130, 8345–8350.

36

Hou, X.; Guo, W.; Jiang, L. Biomimetic smart nanopores and nanochannels. Chem. Soc. Rev. 2011, 40, 2385–2401.

37

Nelson, D. L.; Cox, M. M. Lehninger Principles of Biochemistry—Fourth Edition. W. H. Freeman: New York, 2005; pp. 306–330.

38

Gyurcsanyi, R. E. Chemically-modified nanopores for sensing. Trends Anal. Chem. 2008, 27, 627–639.

39

Mendes, P. M. Stimuli-responsive surfaces for bio-applications. Chem. Soc. Rev. 2008, 37, 2512–2529.

40

Min, S. K.; Kim, W. Y.; Cho, Y.; Kim, K. S. Fast DNA sequencing with a graphene-based nanochannel device. Nat. Nanotechnol. 2011, 6, 162–165.

41

Huang, S.; He, J.; Chang, S.; Zhang, P.; Liang, F.; Li, S.; Tuchband, M.; Fuhrmann, A.; Ros, R.; Lindsay, S. Identifying single bases in a DNA oligomer with electron tunnelling. Nat. Nanotechnol. 2010, 5, 868–873.

42

Postma, H. W. C. Rapid sequencing of individual DNA molecules in graphene nanogaps. Nano Lett. 2010, 10, 420–425.

43

Prasongkit, J.; Grigoriev, A.; Pathak, B.; Ahuja, R.; Scheicher, R. H. Transverse conductance of DNA nucleotides in a graphene nanogap from first principles. Nano Lett. 2011, 11, 1941–1945.

44

Dimiev, A.; Kosynkin, D. V.; Sinitskii, A.; Slesarev, A.; Sun, Z.; Tour, J. M. Layer-by-layer removal of graphene for device patterning. Science 2011, 331, 1168–1172.

45

Miyake, S. 1 nm deep mechanical processing of muscovite mica by atomic force microscopy. Appl. Phys. Lett. 1995, 67, 2925–2927.

46

Umebayashi, T.; Yamaki, T.; Itoh, H.; Asai, K. Band gap narrowing of titanium dioxide by sulfur doping. Appl. Phys. Lett. 2002, 81, 454–456.

47

Weng, H.; Yang, X.; Dong, J.; Mizuseki, H.; Kawasaki, M.; Kawazoe, Y. Electronic structure and optical properties of the Co-doped anatase TiO2 studied from first principles. Phys. Rev. B 2004, 69, 125219.

48

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

49

Sham, L. J.; Schlüter, M. Density-functional theory of the band gap. Phys. Rev. B 1985, 32, 3883–3889.

50

Davidson, A. T.; Vickers, A. F. The optical properties of mica in the vacuum ultraviolet. J. Phys. C: Solid State Phys. 1972, 5, 879–887.

51

Jung, I.; Pelton, M.; Piner, R.; Dikin, D. A.; Stankovich, S.; Watcharotone, S.; Hausner, M.; Ruoff, R. S. Simple approach for high-contrast optical imaging and characterization of graphene-based sheets. Nano Lett. 2007, 7, 3569–3575.

52

Gaskell, P. E.; Skulason, H. S.; Rodenchuk, C.; Szkopek, T. Counting graphene layers on glass via optical reflection microscopy. Appl. Phys. Lett. 2009, 94, 143101.

53

Nolen, C. M.; Denina, G.; Teweldebrhan, D.; Bhanu, B.; Balandin, A. A. High-throughput large-area automated identification and quality control of graphene and few-layer graphene films. ACS Nano 2011, 5, 914–922.

54

Dorn, M.; Lange, P.; Chekushin, A.; Severin, N.; Rabe, J. P. High contrast optical detection of single graphenes on optically transparent substrates. J. Appl. Phys. 2010, 108, 106101.

55

Gorbachev, R. V.; Riaz, I.; Nair, R. R.; Jalil, R.; Britnell, L.; Belle, B. D.; Hill, E. W.; Novoselov, K. S.; Watanabe, K.; Taniguchi, T. et al., Hunting for monolayer boron nitride: Optical and raman signatures. Small 2011, 7, 465–468.

56

Westheim, G. Optimal magnification in visual microscopy. J. Opt. Soc. Am. 1972, 62, 1502–1504.

57

Teo, G. Q.; Wang, H. M.; Wu, Y. H.; Guo, Z. B.; Zhang, J.; Ni, Z. H.; Shen, Z. X. Visibility study of graphene multilayer structures. J. Appl. Phys. 2008, 103, 124302.

58

Zeng, H.; Zhi, C.; Zhang, Z.; Wei, X.; Wang, X.; Guo, W.; Bando, Y.; Golberg, D. "White graphenes": Boron nitride nanoribbons via boron nitride nanotube unwrapping. Nano Lett. 2010, 10, 5049–5055.

59

Siwy, Z. S. Ion-current rectification in nanopores and nanotubes with broken symmetry. Adv. Funct. Mater. 2006, 16, 735–746.

60

Shaw, R. S.; Packard, N.; Schröter, M.; Swinney, H. L. Geometry-induced asymmetric diffusion. Proc. Natl. Acad. Sci. USA 2007, 104, 9580–9584.

61

Guo, W.; Cao, L. X.; Xia, J. C.; Nie, F. Q.; Ma, W.; Xue, J. M.; Song, Y. L.; Zhu, D. B.; Wang, Y. G.; Jiang, L. Energy harvesting with single-ion-selective nanopores: A concentration-gradient-driven nanofluidic power source. Adv. Funct. Mater. 2010, 20, 1339–1344.

62

Cao, L. X.; Guo, W.; Ma, W.; Wang, L.; Xia, F.; Wang, S. T.; Wang, Y. G.; Jiang, L.; Zhu, D. B. Towards understanding the nanofluidic reverse electrodialysis system: Well matched charge selectivity and ionic composition. Energy Environ. Sci. 2011, 4, 2259–2266.

63

Guo, W.; Xia, H. W.; Cao, L. X.; Xia, F.; Wang, S. T.; Zhang, G. Z.; Song, Y. L.; Wang, Y. G.; Jiang, L.; Zhu, D. B. Integrating ionic gate and rectifier within one solid-state nanopore via modification with dual-responsive copolymer brushes. Adv. Funct. Mater. 2010, 20, 3561–3567.

64

Guo, W.; Xia, H.; Xia, F.; Hou, X.; Cao, L.; Wang, L.; Xue, J.; Zhang, G.; Song, Y.; Zhu, D. et al. Current rectification in temperature-responsive single nanopores. ChemPhysChem 2010, 11, 859–864.

65

Zhang, W. M.; Wang, Y. G.; Li, J.; Xue, J. M.; Ji, H.; Ouyang, Q.; Xu, J.; Zhang, Y. Controllable shrinking and shaping of silicon nitride nanopores under electron irradiation. Appl. Phys. Lett. 2007, 90, 163102.

66

Bertolazzi, S.; Brivio, J.; Kis, A. Stretching and breaking of ultrathin MoS2. ACS Nano, in press, DOI:10.1021/nn203879f.

Nano Research
Pages 99-108
Cite this article:
Gao J, Guo W, Geng H, et al. Layer-by-Layer Removal of Insulating Few-Layer Mica Flakes for Asymmetric Ultra-Thin Nanopore Fabrication. Nano Research, 2012, 5(2): 99-108. https://doi.org/10.1007/s12274-011-0189-7

637

Views

49

Crossref

N/A

Web of Science

49

Scopus

7

CSCD

Altmetrics

Received: 21 June 2011
Revised: 27 November 2011
Accepted: 28 November 2011
Published: 29 December 2011
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011
Return