AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Multiplexed Dot Immunoassay Using Ag Nanocubes, Au/Ag Alloy Nanoparticles, and Au/Ag Nanocages

Elizaveta Panfilova1Alexander Shirokov1Boris Khlebtsov1,2( )Larisa Matora1,2Nikolai Khlebtsov1,2
Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences 13 Prospekt Entuziastov Saratov 410049 Russian Federation
Saratov State University 83 Ulitsa AstrakhanskayaSaratov 410012 Russian Federation
Show Author Information

Graphical Abstract

Abstract

We report the first application of Ag nanocubes, Au/Ag alloy nanoparticles, and Au/Ag nanocages in a multiplexed dot immunoassay. The assay principle is based on the staining of analyte drops on a nitrocellulose membrane strip by using multicolor nanoparticles conjugated with biospecific probing molecules. Nanoparticles were prepared by a galvanic replacement reaction between the Ag atoms of silver nanocubes and Au ions of tetrachloroauric acid. Depending on the Ag/Au conversion ratio, the particle plasmon resonance was tuned from 450 to 700 nm and the suspension color changed from yellow to blue. The particles of yellow, red, and blue suspensions were functionalized with chicken, rat, and mouse immuno gamma globulin (IgG) molecular probes, respectively. The multiplex capability of the assay was illustrated by a proof-of-concept experiment involving simultaneous one-step determination of target molecules (rabbit anti-chicken, anti-rat, and anti-mouse antibodies) with a mixture of fabricated conjugates. Under naked eye examination, no cross-colored spots or nonspecific bioconjugate adsorption were observed, and the low detection limit was about 20 fmol.

References

1

Sperling, R. A.; Gil, P. R.; Zhang, F.; Zanella, M.; Parak, W. J. Biological applications of gold nanoparticles. Chem. Soc. Rev. 2008, 37, 1896–1908.

2

Wilson, R. The use of gold nanoparticles in diagnostics and detection. Chem. Soc. Rev. 2008, 37, 2028–2045.

3

Boisselier, E.; Astruc D. Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 2009, 38, 1759–1782.

4

Giljohann, D. A.; Seferos, D. S.; Daniel, W. L.; Massich, M. D.; Patel, P. C.; Mirkin, C. A. Gold nanoparticles for biology and medicine. Angew. Chem. Int. Ed. 2010, 49, 3280–3294.

5

Cobley, C. M.; Chen, J.; Cho, E. C.; Wang, L. V.; Xia, Y. Gold nanostructures: A class of multifunctional materials for biomedical applications. Chem. Soc. Rev. 2011, 40, 44–56.

6

Khlebtsov, N. G.; Dykman, L. A. Optical properties and biomedical applications of plasmonic nanoparticles. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 1–35.

7

Nguyen, D. T.; Kim, D. J.; Kim, K. S. Controlled synthesis and biomolecular probe application of gold nanoparticles. Micron 2011, 42, 207–227.

8

Zeng, S.; Yong, K. T.; Roy, I.; Dinh, X. Q.; Yu, X.; Luan, F. A review on functionalized gold nanoparticles for biosensing applications. Plasmonics 2011, 6, 491–506.

9

Hutter, E.; Maysinger, D. Gold nanoparticles and quantum dots for bioimaging. Microsc. Res. Tech. 2011, 74, 592–604.

10

Coto-García, A. M.; Sotelo-González, E.; Fernández-Argüelles, M. T.; Pereiro, R.; Costa-Fernández, J. M.; Sanz-Medel, A. Nanoparticles as fluorescent labels for optical imaging and sensing in genomics and proteomics. Anal. Bioanal. Chem. 2011, 399, 29–42.

11

Mayer, K. M.; Hafner, J. H. Localized surface plasmon resonance sensors. Chem. Rev. 2011, 111, 3828–3857.

12

Goldman, E. R.; Medintz, I. L.; Mattoussi, H. Luminescent quantum dots in immunoassays. Anal. Bioanal. Chem. 2006, 384, 560–563.

13

Chan, W. C. W.; Maxwell, D. J.; Gao, X.; Bailey, R. E.; Han, M. Y.; Nie, S. M. Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol. 2002, 13, 40–46.

14

Wu, X.; Liu, H.; Liu, J.; Haley, K. N.; Treadway, J. A.; Larson, J. P.; Ge, N.; Peale, F.; Bruchez, M. P. Corrigendum: Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 2003, 21, 41–46.

15

Gao, X.; Cui, Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 2004, 22, 969–976.

16

Xing, Y.; Chaudry, Q.; Shen, C.; Kong, K. Y.; Zhau, H. E.; Chung, L. W.; Petros, J. A.; O'Regan, R. M.; Yezhelyev, M. V.; Simons, J. W.; Wang, M. D.; Nie, S. Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat. Protoc. 2007, 2, 1152–1165.

17

Wang, H. Q.; Wang, J. H.; Li, Y. Q.; Li, X. Q.; Liu, T. C.; Huang, Z. L.; Zhao, Y. D. Multi-color encoding of polystyrene microbeads with CdSe/ZnS quantum dots and its application in immunoassay. J. Colloid Interface Sci. 2007, 316, 622–627.

18

Summers, C. J.; Menkara, H. M.; Gilstrap, R. A., Jr.; Menkara, M.; Morris, T. Nanocrystalline phosphors for lighting and detection applications. Mater. Sci. Forum, 2010, 654–656, 1130–1133.

19

Wang, Z.; Wang, X.; Jiang, H.; Ding, J.; Wang, J.; Shi, W. Probing near-infrared quantum dots for imaging and biomedical applications. Adv. Mater. Res. 2012, 345, 3–11.

20

Pons, T.; Pic, E.; Lequeux, N.; Cassette, E.; Bezdetnaya, L.; Guillemin, F. Marchal, F.; Dubertre, B. Cadmium-free CuInS2/ZnS quantum dots for sentinel lymph node imaging with reduced toxicity. ACS Nano 2010, 4, 2531–2538.

21

Khlebtsov, N. G.; Dykman, L. A. Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies. Chem. Soc. Rev. 2011, 40, 1647–1671.

22

Hu, R.; Yong, K. T.; Roy, I.; Ding, H.; He, S.; Prasad, P. N. Metallic nanostructures as localized plasmon resonance enhanced scattering probes for multiplex dark-field targeted imaging of cancer cells. J. Phys. Chem. C 2009, 113, 2676–2684.

23

Schultz, S.; Smith, D. R.; Mock, J. J.; Schultz, D. A. Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc. Natl. Acad. Sci. USA 2000, 97, 996–1001.

24

Khlebtsov, B.; Khlebtsov, N. Ultrasharp light-scattering resonances of structured nanospheres: Effects of size-dependent dielectric functions. J. Biomed. Opt. 2006, 11, 044002.

25

Nehl, C. L.; Hafner, J. H. Shape-dependent plasmon resonances of gold nanoparticles. J. Mater. Chem. 2008, 18, 2415–2419.

26

Sun, Y.; Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298, 2176–2179.

27

Sun, Y.; Mayers, B. T.; Xia, Y. Template-engaged replacement reaction: A one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano Lett. 2002, 2, 481–485.

28

Mahmoud, M. A.; El-Sayed, M. A. Gold nanoframes: Very high surface plasmon fields and excellent near-infrared sensors. J. Am. Chem. Soc. 2010, 132, 12704–12710.

29

Sun, Y.; Xia, Y. Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J. Am. Chem. Soc. 2004, 126, 3892–3901.

30

Skrabalak, S. E.; Chen, J.; Sun, Y.; Lu, X.; Au, L.; Cobley, C. M.; Xia, Y. Gold nanocages: Synthesis, properties, and applications. Acc. Chem. Res. 2008, 41, 1587–1595.

31

Khlebtsov, B.; Panfilova, E.; Khanadeev, V.; Bibikova, O.; Terentyuk, G.; Ivanov, A.; Rumyantseva, V.; Shilov, I.; Ryabova, A.; Loshchenov, V.; Khlebtsov, N. G. Nano-composites containing silica-coated gold–silver nanocages and Yb-2, 4-dimethoxyhematoporphyrin: Multifunctional capability of IR-luminescence detection, photosensitization, and photo-thermolysis. ACS Nano 2011, 5, 7077–7089.

32

Yegorenkova, I. V.; Tregubova, K. V.; Matora, L. Y.; Burygin, G. L.; Ignatov, V. V. Use of ELISA with antiexo-polysaccharide antibodies to evaluate wheat-root colonization by the rhizobacterium Paenibacillus polymyxa. Curr. Microbiol. 2010, 61, 376–380.

33

Skrabalak, S. E.; Au, L.; Li, X.; Xia, Y. Facile synthesis of Ag nanocubes and Au nanocages. Nat. Protoc. 2007, 2, 2182–2190.

34

Khlebtsov, B. N.; Khanadeev, V. A.; Maksimova, I. L.; Terentyuk, G. S.; Khlebtsov, N. G. Silver nanocubes and gold nanocages: Fabrication and optical and photothermal properties. Nanotechnol Russia 2010, 5, 454–468.

35

Khanadeev, V. A.; Khlebtsov, B. N.; Staroverov, S. A.; Vidyasheva, I. V.; Skaptsov, A. A.; Ileneva, E. S.; Bogatyrev, V. A.; Dykman, L. A.; Khlebtsov, N. G. Quantitative cell bioimaging using gold-nanoshell conjugates and phage antibodies. J. Biophotonics 2011, 4, 74–83.

36

Dykman, L. A.; Bogatyrev V. A. Gold nanoparticles: Preparation, functionalisation, and applications in biochemistry and immunochemistry. Russ. Chem. Rev. 2007, 76, 181–194.

37

Jürgens, L.; Nichtl, A.; Werner, U. Electron density imaging of protein films on gold-particle surfaces with transmission electron microscopy. Cytometry 1999, 37, 87–92.

38

Khlebtsov, N. G.; Bogatyrev, V. A.; Khlebtsov, B. N.; Dykman, L. A.; Englebienne, P. A multilayer model for gold nanoparticle bioconjugates: Application to study of gelatin and human IgG adsorption using extinction and light scattering spectra and the dynamic light scattering method. Colloid J. 2003, 65, 622–635.

39

Khlebtsov, B.; Khlebtsov, N. Enhanced solid-phase immunoassay using gold nanoshells: Effect of nanoparticle optical properties. Nanotechnology 2008, 19, 435703.

40

Chen, C.; Wang, L.; Yu, H.; Wang, J.; Zhou, J.; Tan, Q.; Deng, L. Morphology-controlled synthesis of silver nanostructures via a seed catalysis process. Nanotechnology 2007, 18, 115612.

41

Sosa, I. O.; Noguez, C.; Barrera, R. G. Optical properties of metal nanoparticles with arbitrary shapes. J. Phys. Chem. B 2003, 107, 6269–6275.

42

Zhang, Q.; Cobley, C.; Au, L.; McKiernan, M.; Schwartz, A.; Wen, L. -P.; Chen, J.; Xia, Y. Production of Ag nanocubes on a scale of 0.1 g per batch by protecting the NaHS-mediated polyol synthesis with argon. ACS Appl. Mater. Interf. 2009, 1, 2044–2048.

43

Lu, X.; Tuan, H. Y.; Chen, J.; Li, Z. Y.; Korgel, B. A.; Xia, Y. Mechanistic studies on the galvanic replacement reaction between multiply twinned particles of Ag and HAuCl4 in an organic medium. J. Am. Chem. Soc. 2007, 129, 1733–1742.

44

Liao, H.; Hafner, J. H. Gold nanorod bioconjugates. Chem. Mater. 2005, 17, 4636–4641.

45

Xie, Z. X.; Charlier, J.; Cousty J. Molecular structure of self-assembled pyrrolidone monolayers on the Au (111) surface: Formation of hydrogen bond-stabilized hexamers. Surf. Sci. 2000, 448, 201–211.

46

Chen, J.; Saeki, F.; Wiley, B. J.; Cang, H.; Cobb, M. J.; Li, Z. Y.; Au, L.; Zhang, H.; Kimmey, M. B.; Li, X.; Xia, Y. Gold nanocages: Bioconjugation and their potential use as optical imaging contrast agents. Nano Lett. 2005, 5, 473–477.

47

Urusov, A. E.; Zherdev, A. V.; Dzantiev B. B. Immunochemical methods of mycotoxin analysis (review). Appl. Biochem. Microbiol. 2010, 46, 253–266.

48

Yeh, C. H.; Hung, C. Y.; Chang, T. C.; Lin, H. P.; Lin, Y. C. An immunoassay using antibody–gold nanoparticle conjugate, silver enhancement and flatbed scanner. Microfluid. Nanofluid. 2009, 6, 85–91.

Nano Research
Pages 124-134
Cite this article:
Panfilova E, Shirokov A, Khlebtsov B, et al. Multiplexed Dot Immunoassay Using Ag Nanocubes, Au/Ag Alloy Nanoparticles, and Au/Ag Nanocages. Nano Research, 2012, 5(2): 124-134. https://doi.org/10.1007/s12274-012-0193-6

636

Views

40

Crossref

N/A

Web of Science

45

Scopus

0

CSCD

Altmetrics

Received: 11 October 2011
Revised: 05 December 2011
Accepted: 09 December 2011
Published: 10 January 2012
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012
Return