Publications
Sort:
Research Article Issue
Gold nanorods with a hematoporphyrin-loaded silica shell for dual-modality photodynamic and photothermal treatment of tumors in vivo
Nano Research 2014, 7(3): 325-337
Published: 03 January 2014
Abstract PDF (1.4 MB) Collect
Downloads:29

Nanocomposites (NCs) consisting of a gold nanorod core and a mesoporous silica shell doped with hematoporphyrin (HP) have been fabricated in order to improve the efficiency of cancer treatment by combining photothermal and photodynamic therapies (PDT + PTT) in vivo. In addition to the long-wavelength plasmon resonance near 810–830 nm, the fabricated NCs exhibited a 400-nm absorbance peak corresponding to bound HP, generated singlet oxygen under 633-nm excitation near the 632.5-nm Q-band, and produced heat under a 808-nm near-infrared (NIR) laser irradiation. These modalities were used for a combined PDT + PTT treatment of large (about 3 cm3) solid tumors in vivo with a xenorafted tumor rat model. NCs were directly injected into tumors and irradiated simultaneously with 633-nm and 808-nm lasers to stimulate the combined photodynamic and photothermal activities of NCs. The efficiency of the combined therapy was evaluated by optical coherence tomography, histological analysis, and by measurements of the tumor volume growth during a 21-day period. The NC-mediated PDT led to weak changes in tissue histology and to a moderate 20% decrease in the tumor volume. In contrast, the combined PDT + PTT treatment resulted in the large-area tumor necrosis and led to dramatic decrease in the tumor volume.

Research Article Issue
Multiplexed Dot Immunoassay Using Ag Nanocubes, Au/Ag Alloy Nanoparticles, and Au/Ag Nanocages
Nano Research 2012, 5(2): 124-134
Published: 10 January 2012
Abstract PDF (602.3 KB) Collect
Downloads:30

We report the first application of Ag nanocubes, Au/Ag alloy nanoparticles, and Au/Ag nanocages in a multiplexed dot immunoassay. The assay principle is based on the staining of analyte drops on a nitrocellulose membrane strip by using multicolor nanoparticles conjugated with biospecific probing molecules. Nanoparticles were prepared by a galvanic replacement reaction between the Ag atoms of silver nanocubes and Au ions of tetrachloroauric acid. Depending on the Ag/Au conversion ratio, the particle plasmon resonance was tuned from 450 to 700 nm and the suspension color changed from yellow to blue. The particles of yellow, red, and blue suspensions were functionalized with chicken, rat, and mouse immuno gamma globulin (IgG) molecular probes, respectively. The multiplex capability of the assay was illustrated by a proof-of-concept experiment involving simultaneous one-step determination of target molecules (rabbit anti-chicken, anti-rat, and anti-mouse antibodies) with a mixture of fabricated conjugates. Under naked eye examination, no cross-colored spots or nonspecific bioconjugate adsorption were observed, and the low detection limit was about 20 fmol.

Total 2