AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Gold nanorods with a hematoporphyrin-loaded silica shell for dual-modality photodynamic and photothermal treatment of tumors in vivo

Georgy Terentyuk1,4Elizaveta Panfilova1,2Vitaly Khanadeev1,2Daniil Chumakov1Elina Genina1Alexey Bashkatov1Valery Tuchin1,3,5Alla Bucharskaya6Galina Maslyakova6Nikolai Khlebtsov1,2Boris Khlebtsov1,2( )
Saratov State University, 83 AstrakhanskayaSaratov 410012 Russia
Institute of Biochemistry and Physiology of Plants and Microorganisms 13 pr. EntuziastovSaratov 410049 Russia
Institute of Precise Mechanics and Control of RAS 24 RabochayaSaratov 410028 Russia
Ulyanovsk State University 42 Lev TolstoyUlyanovsk 432017 Russia
Optoelectronics and Measurement Techniques Laboratory University of Oulu, P.O. Box 4500Oulu FIN-90014 Finland
Saratov State Medical University 112 Bolshaya KazachiaSaratov 410012 Russia
Show Author Information

Graphical Abstract

Abstract

Nanocomposites (NCs) consisting of a gold nanorod core and a mesoporous silica shell doped with hematoporphyrin (HP) have been fabricated in order to improve the efficiency of cancer treatment by combining photothermal and photodynamic therapies (PDT + PTT) in vivo. In addition to the long-wavelength plasmon resonance near 810–830 nm, the fabricated NCs exhibited a 400-nm absorbance peak corresponding to bound HP, generated singlet oxygen under 633-nm excitation near the 632.5-nm Q-band, and produced heat under a 808-nm near-infrared (NIR) laser irradiation. These modalities were used for a combined PDT + PTT treatment of large (about 3 cm3) solid tumors in vivo with a xenorafted tumor rat model. NCs were directly injected into tumors and irradiated simultaneously with 633-nm and 808-nm lasers to stimulate the combined photodynamic and photothermal activities of NCs. The efficiency of the combined therapy was evaluated by optical coherence tomography, histological analysis, and by measurements of the tumor volume growth during a 21-day period. The NC-mediated PDT led to weak changes in tissue histology and to a moderate 20% decrease in the tumor volume. In contrast, the combined PDT + PTT treatment resulted in the large-area tumor necrosis and led to dramatic decrease in the tumor volume.

Electronic Supplementary Material

Download File(s)
nr-7-3-325_ESM.pdf (552.7 KB)

References

1

Dykman, L. A.; Khlebtsov, N. G. Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chem. Soc. Rev. 2012, 41, 2256–2282.

2

Dreaden, E. C.; Alkilany, M. A.; Huang, X.; Murphy, C. J.; El-Sayed, M. A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev. 2012, 41, 2740–2779.

3

Yuan, H.; Fales, A. M.; Vo-Dinh, T. TAT peptide-functionalized gold nanostars: Enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance. J. Am. Chem. Soc. 2012, 134, 11358–11361.

4

Van de Broek, B.; Devoogdt, N.; D'Hollander, A.; Gijs, H. L.; Jans, K.; Lagae, L.; Muyldermans, S.; Maes, G.; Borghs, G. Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy. ACS Nano 2011, 5, 4319–4328.

5

Huang, P.; Bao, L.; Zhang, C.; Lin, J.; Luo, T.; Yang, D.; He, M.; Li, Z.; Gao, G.; Gao, B. et al. Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy. Biomaterials 2011, 32, 9796–9809.

6

Huang, P.; Pandoli, O.; Wang, X.; Wang, Z.; Li, Z.; Zhang, C.; Chen, F.; Lin, J.; Cui, D.; Chen, X. Chiral guanosine 5′-monophosphate-capped gold nanoflowers: Controllable synthesis, characterization, surface-enhanced Raman scattering activity, cellular imaging and photothermal therapy. Nano Res. 2012, 5, 630–639.

7

Lukianova-Hleb, E. Y.; Sassaroli, E.; Jones, A.; Lapotko, D. O. Transient photothermal spectra of plasmonic nanobubbles. Langmuir 2012, 28, 4858–4866.

8

Ratto, F.; Matteini, P.; Centi, S.; Rossi, F.; Pini, R. Gold nanorods as new nanochromophores for photothermal therapies. J. Biophotonics 2011, 4, 64–73.

9

Lapotko, D.; Lukianova, E.; Оraevsky, A. Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles. Lasers Surg. Med. 2006, 38, 631–642.

10

Huang, X.; Jain, P. K.; El-Sayed, I. H.; El-Sayed, M. A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 2008, 23, 217–228.

11

Zharov, V. P.; Galitovskaya, E. N.; Johnson, C.; Kelly, T. Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: Potential for cancer therapy. Lasers Surg. Med. 2005, 37, 219–226.

12

Tuchina, E. S.; Tuchin, V. V.; Khlebtsov, B. N.; Khlebtsov, N. G. Phototoxic effect of conjugates of plasmon-resonance nanoparticles with indocyanine green dye on Staphylococcus aureus induced by IR laser radiation. Quantum Electron. 2011, 41, 354–359.

13

Dinish, U. S.; Goh, D.; Fu, C. Y.; Bhuvaneswari, R.; Sun, W.; Olivo, M. Optimized synthesis of PEG-encapsulated gold nanorods for improved stability and its application in OCT imaging with enhanced contrast. Plasmonics 2013, 8, 591–598.

14

Jung, Y.; Reif, R.; Zeng, Y.; Wang, R. K. Three-dimensional high-resolution imaging of gold nanorods uptake in sentinel lymph nodes. Nano Lett. 2011, 11, 29382943.

15

Durr, N. J.; Larson, T.; Smith, D. K.; Korgel, B. A.; Sokolov, K.; Ben-Yakar, A. Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett. 2007, 7, 941–945.

16

Yuan, H.; Khoury, C. G.; Hwang, H.; Wilson, C. M.; Grant, G. A.; Vo-Dinh, T. Gold nanostars: Surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging. Nanotechnology 2012, 23, 075102.

17

Cho, E. C.; Zhang, Y.; Cai, X.; Moran, C. M.; Wang, L. V.; Xia, Y. Quantitative analysis of the fate of gold nanocages in vitro and in vivo after uptake by U87-MG tumor cells. Angew. Chem. Int. Ed. 2013, 52, 1152–1155.

18

Li, W.; Brown, P. K.; Wang, L. V.; Xia, Y. Gold nanocages as contrast agents for photoacoustic imaging. Contrast Media Mol. I. 2011, 6, 370–377.

19

Lukianova-Hleb, E. Y.; Hanna, E. Y.; Hafner, J. H.; Lapotko, D. O. Tunable plasmonic nanobubbles for cell theranostics. Nanotechnology 2010, 21, 085102.

20

Lammers, T.; Aime, S.; Hennink, W. E.; Storm, G.; Kiessling, F. Theranostic nanomedicine. Acc. Chem. Res. 2011, 44, 10291038.

21

Khlebtsov, N.; Bogatyrev, V.; Dykman, L.; Khlebtsov, B.; Staroverov, S.; Shirokov, A.; Matora, L.; Khanadeev, V.; Pylaev, T.; Tsyganova, N. et al. Analytical and theranostic applications of gold nanoparticles and multifunctional nanocomposites. Theranostics 2013, 3, 167–180.

22

Xiong, R.; Soenen, S.; Braeckmans, K.; Skirtach, A. Towards theranostic multicompartment microcapsules: In-situ diagnostics and laser-induced treatment. Theranostics 2013, 3, 141–151.

23

Khlebtsov, B. N.; Panfilova, E. V.; Khanadeev, V. A.; Bibikova, O. A.; Terentyuk, G. S.; Ivanov, A.; Rumyantseva, V.; Shilov, I.; Ryabova, A.; Loshchenov, V. et al. Nanocomposites containing silica-coated gold-silver nanocages and Yb-2, 4-dimethoxyhematoporphyrin: Multifunctional capability of IR-luminescence detection, photosensitization, and photothermolysis. ACS Nano 2011, 5, 7077–7089.

24

Wang, S.; Huang, P.; Nie, L.; Xing, R.; Liu, D.; Wang, Z.; Lin, J.; Chen, S.; Niu, G.; Lu, G. et al. Single continuous wave laser induced photodynamic/plasmonic photothermal therapy using photosensitizer-functionalized gold nanostars. Adv. Mater. 2013, 25, 3055–3061.

25
Chen, W. Nanoparticle based photodynamic therapy for cancer treatment. In Cancer Nanotechnology. Nalwa, H. S.; Webster, T. J., Eds.; American Scientific Publishers: Los Angeles, 2007; pp 235–258.
26

Zhao, T.; Shen, X.; Li, L.; Guan, Z.; Gao, N.; Yuan, P.; Yao, S. Q.; Xu, Q. H.; Xu G. Q. Gold nanorods as dual photo-sensitizing and imaging agents for two-photon photodynamic therapy. Nanoscale 2012, 4, 7712–7719.

27

Jiang, C.; Zhao, T.; Yuan, P.; Gao, N.; Pan, Y.; Guan, Z.; Zhou, N.; Xu Q. H. Two-photon induced photoluminescence and singlet oxygen generation from aggregated gold nanoparticles, ACS Appl. Mater. Interfaces 2013, 12, 4972–4977.

28

Jang, B.; Park, J. Y.; Tung, C. H.; Kim, I. H.; Choi, Y. Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. ACS Nano 2011, 5, 1086–1094.

29

Jang, B.; Choi, Y. Photosensitizer-conjugated gold nanorods for enzyme-activatable fluorescence imaging and photodynamic therapy. Theranostics 2012, 2, 190–197.

30

Wang, J.; Tang, H. Y.; Yang, W. L.; Chen, J. Y. Aluminum phthalocyanine and gold nanorod conjugates: The combination of photodynamic therapy and photothermal therapy to kill cancer cells. J. Porphyr. Phthalocya. 2012, 16, 802–808.

31

Wang, J.; You, M. X.; Zhu, G. Z.; Shukoor, M. I.; Chen, Z.; Zhao, Z. L.; Altman, M. B.; Yuan, Q.; Zhu, Z.; Chen, Y. et al. Photosensitizer–gold nanorod composite for targeted multimodal therapy. Small, in press, DOI: 10.1002/smll.201202155.

32

Zhang, Y. X.; Aslan, K.; Previte, M. J. R.; Geddes, C. D. Metal-enhanced singlet oxygen generation: A consequence of plasmon enhanced triplet yields. J. Fluoresc. 2007, 17, 345–349.

33

Khlebtsov, B. N.; Tuchina, E. S.; Khanadeev, V. A.; Panfilova, E. V.; Petrov, P. O.; Tuchin, V. V.; Khlebtsov, N. G. Enhanced photoinactivation of Staphylococcus aureus with nanocomposites containing plasmonic particles and hematoporphyrin. J. Biophotonics 2013, 6, 338–351.

34

Zhang, Y.; Qian, J.; Wang, D.; Wang, Y. L.; He, S. L. Multifunctional gold nanorods with ultrahigh stability and tunability for in vivo fluorescence imaging, SERS detection, and photodynamic therapy. Angew. Chem. Int. Ed. 2013, 52, 1148–1151.

35

Khlebtsov, N.; Dykman, L. Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies. Chem. Soc. Rev. 2011, 40, 1647–1671.

36

Terentyuk, G. S.; Maslyakova, G. N.; Khlebtsov, N. G.; Akchurin, G. G.; Tuchin, V. V.; Maksimova, I. L.; Khlebtsov, B. N.; Suleymanova, L. V. Laser-induced tissue hyperthermia mediated by gold nanoparticles: Toward cancer phototherapy. J. Biomed. Opt. 2009, 14, 021016.

37

Nikoobakht, B.; El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15, 1957–1962.

38

Khlebtsov, B. N.; Khanadeev, V. A.; Khlebtsov, N. G. Observation of extra-high depolarized light scattering spectra from gold nanorods. J. Phys. Chem. C 2008, 112, 12760–12768.

39

Chen, Y. S.; Frey, W.; Kim, S.; Kruizinga, P.; Homan, K.; Emelianov, S. Silica-coated gold nanorods as photoacoustic signal nanoamplifiers. Nano Lett. 2011, 11, 348–354.

40

Xie, H.; Goins, B.; Bao, A.; Wang, Z. J.; Philips, W. T. Effect of intratumoral administration on biodistribution of 64Cu-labeled nanoshells. Int. J. Nanomedicine 2012, 7, 2227–2238.

41

Genina, E. A.; Bashkatov, A. N.; Tuchin, V. V. Tissue optical immersion clearing. Expert Rev. Med. Devices 2010, 7, 825–842.

42

Chen, Y. S.; Frey, W.; Kim, S.; Kruizinga, P.; Homan, K.; Emelianov, S. Silica-coated gold nanorods as photoacoustic signal nanoamplifiers. Nano Lett. 2011, 11, 348–354.

43

Gorelikov, I.; Matsuura N. Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles. Nano Lett. 2008, 8, 369–373.

44

Joo, S. H.; Park, J. Y.; Tsung, C. K.; Yamada, Y.; Yang, P. D.; Somorjai, G. A. Thermally stable Pt/mesoporous silica core–shell nanocatalysts for high-temperature reactions. Nat. Mater. 2009, 8, 126–131.

45

Zhao, T.; Wu, H.; Yao, S. Q.; Xu, Q. H.; Xu, G. Q. Nanocomposites containing gold nanorods and porphyrin-doped mesoporous silica with dual capability of two-photon imaging and photosensitization. Langmuir 2010, 26, 14937–14942.

46

Khlebtsov, B. N.; Khanadeev, V. A.; Maksimova, I. L.; Terentyuk, G. S.; Khlebtsov, N. G. Silver nanocubes and gold nanocages: Fabrication and optical and photothermal properties. Nanotechnol. Russia 2010, 5, 454–468.

47

Pattan, V. P.; Tunnell, J. W. Nanoparticle-mediated photothermal therapy: A comparative study of heating for different particle types. Lasers Surg. Med. 2012, 44, 675–684.

48

Goldberg, S. N.; Gazelle, G. S.; Mueller, P. R. Thermal ablation therapy for focal malignancy: A unified approach to underlying principles, techniques, and diagnostic imaging guidance. AJR Am. J. Roentgenol. 2000, 174, 323–331.

49

Zagaynova, E. V.; Shirmanova, M. V.; Kirillin, M. Y.; Khlebtsov, B. N.; Orlova, A. G.; Balalaeva, I. V.; Sirotkina, M. A.; Bugrova, M. L.; Agrba, P. D.; Kamensky, V. A. Contrasting properties of gold nanoparticles for optical coherence tomography: Phantom, in vivo studies and Monte Carlo simulation. Phys. Med. Biol. 2008, 53, 4995–5009.

50

Larin, K. V.; Ghosn, M. G.; Bashkatov, A. N.; Genina E. A.; Trunina, N. A.; Tuchin, V. V. Optical clearing for OCT image enhancement and in-depth monitoring of molecular diffusion. IEEE J. Sel. Top. Quant. 2012, 18, 1244–1259.

51

Kozina, A. M.; Genina, E. A.; Terentyuk, G. S.; Terentyuk, A. G.; Bashkatov, A. N.; Tuchin, V. V.; Khlebtsov, B. N. The development of skin immersion clearing method for increasing of laser exposure efficiency on subcutaneous objects. Proc. SPIE 2012, 8427, 842726.

52
Chen, W. R.; Li, X.; Naylor, M. F.; Liu, H.; Nordquist, R. E. Advances in cancer photothermal therapy. In Handbook of Photonics for Biomedical Science. Tuchin V. V., Ed; CRC Press, Taylor & Francis Group: London, 2010; pp 739–761.https://doi.org/10.1201/9781439806296-c28
53

Chen, W. R.; Adams, R. L.; Carubelli, R.; Nordquist, R. E. Laser-photosensitizer assisted immunotherapy: A novel modality of cancer treatment. Cancer Lett. 1997, 115, 25–30.

54

Chen, W. R.; Singhal, A. K.; Liu, H.; Nordquist, R. E. Antitumor immunity induced by laser immunotherapy and its adoptive transfer. Cancer Res. 2001, 61, 459–461.

55

Zhou, F. F.; Xing, D.; Wu, B. Y.; Wu, S. N.; Ou, Z. M.; Chen, W. R. New insights of transmembranal mechanism and subcellular localization of noncovalently modified single-walled carbon nanotubes. Nano Lett. 2010, 10, 1677–1681.

56

Zhou, F. F.; Wu, S. N.; Song, S.; Chen, W. R.; Resasco, D. E.; Xing, D. Antitumor immunologically modified carbon nanotubes for photothermal therapy. Biomaterials 2012, 33, 3235–3242.

Nano Research
Pages 325-337
Cite this article:
Terentyuk G, Panfilova E, Khanadeev V, et al. Gold nanorods with a hematoporphyrin-loaded silica shell for dual-modality photodynamic and photothermal treatment of tumors in vivo. Nano Research, 2014, 7(3): 325-337. https://doi.org/10.1007/s12274-013-0398-3
Part of a topical collection:

754

Views

136

Crossref

N/A

Web of Science

154

Scopus

19

CSCD

Altmetrics

Received: 01 August 2013
Revised: 06 December 2013
Accepted: 10 December 2013
Published: 03 January 2014
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013
Return