AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Versatile inorganic–organic hybrid WOx–ethylenediamine nanowires: Synthesis, mechanism and application in heavy metal ion adsorption and catalysis

Wei Li1,2Fang Xia2Jin Qu1Ping Li1Dehong Chen3Zhe Chen1Yu Yu1Yu Lu2Rachel A. Caruso2,3( )Weiguo Song1( )
Beijing National Laboratory for Molecular Sciences (BNLMS)Institute of Chemistry, Chinese Academy of SciencesBeijing100190China
CSIRO Materials Science and EngineeringPrivate Bag 33, Clayton SouthVictoria3169Australia
PFPC, School of ChemistryThe University of Melbourne, MelbourneVictoria3010Australia
Show Author Information

Graphical Abstract

Abstract

Inorganic–organic hybrid WOx-ethylenediamine (WOx–EDA) nanowires have been produced by a simple, low-cost and high-yield solvothermal method. These WOx–EDA hybrid nanowires have unique lamellar mesostructures with an alternate stacking of an interconnected [WO6] octahedral layer and a monolayer of ethylenediamine molecules. This hybrid structure integrated the functionality of ethylenediamine with the stability of the WOx frameworks. In situ synchrotron-radiation X-ray diffraction is used to elucidate a possible formation mechanism of the hybrid WOx–EDA. The nanowire morphology, lamellar structure and abundant functional amino groups endow them with versatile abilities. For example, in heavy metal ion adsorption the WOx–EDA nanowires display exceptional adsorption capabilities of 925 mg·g–1 for Pb2+ and 610 mg·g–1 for UO22+. The nanowires also show outstanding stability and activity as a heterogeneous base catalyst in the Knoevenagel condensation reaction at room temperature. The catalyst can be recycled and reused for 20 cycles with nearly 100% yields. This study provides a new strategy to design inorganic–organic hybrid materials, and offers a multifunctional material that is a highly efficient adsorbent and sustainable catalyst.

Electronic Supplementary Material

Download File(s)
nr-7-6-903_ESM.pdf (5.4 MB)

References

1

Yu, L.; Zou, R. Z.; Zhang, Z. Y.; Song, G. S.; Chen, Z. G.; Yang, J. M.; Hu, J. Q. A Zn2GeO4–ethylenediamine hybrid nanoribbon membrane as a recyclable adsorbent for the highly efficient removal of heavy metals from contaminated water. Chem. Commun. 2011, 47, 10719–10721.

2

Yang, D. J.; Zheng, Z. F.; Zhu, H. Y.; Liu, H. W.; Gao, X. P. Titanate nanofibers as intelligent absorbents for the removal of radioactive ions from water. Adv. Mater. 2008, 20, 2777–2781.

3

Manos, M. J.; Kanatzidis, M. G. Layered metal sulfides capture uranium from seawater. J. Am. Chem. Soc. 2012, 134, 16441–16446.

4

Manos, M. J.; Petkov, V. G.; Kanatzidis, M. G. H2xMnxSn3–xS6 (x = 0.11–0.25): A novel reusable sorbent for highly specific mercury capture under extreme pH conditions. Adv. Funct. Mater. 2009, 19, 1087–1092.

5

Ali, I. New generation adsorbents for water treatment. Chem. Rev. 2012, 112, 5073–5091.

6

Pendergast, M. M.; Hoek, E. M. V. A review of water treatment membrane nanotechnologies. Energy Environ. Sci. 2011, 4, 1946–1971.

7

Violante, A.; Ricciardella, M.; Del Gaudio, S.; Pigna, M. Coprecipitation of arsenate with metal oxides: Nature, mineralogy, and reactivity of aluminum precipitates. Environ. Sci. Technol. 2006, 40, 4961–4967.

8

Baltpurvins, K. A.; Burns, R. C.; Lawrance, G. A.; Stuart, A. D. Use of the solubility domain approach for the modeling of the hydroxide precipitation of heavy metals from wastewater. Environ. Sci. Technol. 1996, 30, 1493–1499.

9

Li, W.; Cao, C. Y.; Wu, L. Y.; Ge, M. F.; Song, W. G. Superb fluoride and arsenic removal performance of highly ordered mesoporous aluminas. J. Hazard. Mater. 2011, 198, 143–150.

10

Manos, M. J.; Malliakas, C. D.; Kanatzidis, M. G. Heavy-metal-ion capture, ion-exchange, and exceptional acid stability of the open-framework chalcogenide (NH4)4In12Se20. Chem. Eur. J. 2007, 13, 51–58.

11

Manos, M. J.; Kanatzidis, M. G. Highly efficient and rapid Cs+ uptake by the layered metal sulfide K2xMnxSn3–xS6 (KMS-1). J. Am. Chem. Soc. 2009, 131, 6599–6607.

12

Zhong, L. S.; Hu, J. S.; Liang, H. P.; Cao, A. M.; Song, W. G.; Wan, L. J. Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Adv. Mater. 2006, 18, 2426–2431.

13

Chen, D.; Cao, L.; Hanley, T. L.; Caruso, R. A. Facile Synthesis of monodisperse mesoporous zirconium titanium oxide microspheres with varying compositions and high surface areas for heavy metal ion sequestration. Adv. Funct. Mater. 2012, 22, 1966–1971.

14

Barakat, M. A.; Schmidt, E. Polymer-enhanced ultrafiltration process for heavy metals removal from industrial wastewater. Desalination 2010, 256, 90–93.

15

Heidmann, I.; Calmano, W. Removal of Zn(Ⅱ), Cu(Ⅱ), Ni(Ⅱ), Ag(Ⅰ) and Cr(Ⅵ) present in aqueous solutions by aluminium electrocoagulation J. Hazard. Mater. 2008, 152, 934–941.

16

Dialynas, E.; Diamadopoulos, E. Integration of a membrane bioreactor coupled with reverse osmosis for advanced treatment of municipal wastewater. Desalination 2009, 238, 302–311.

17

Crittenden, J. C.; Trussell, R. R.; Hand, D. W.; Howe, K. J.; Tchobanoglous, G. MWH's Water Treatment: Principles and Design, 3rd Edition; Wiley-VCH: Weinheim, 2012.

18

Jagtap, S.; Yenkie, M. K.; Labhsetwar, N.; Rayalu, S. Fluoride in drinking water and defluoridation of water. Chem. Rev. 2012, 112, 2454–2466.

19

Zhong, L. S.; Hu, J. S.; Wan, L. J.; Song, W. G. Facile synthesis of nanoporous anatase spheres and their environmental applications. Chem. Commun. 2008, 1184–1186.

20

Yavuz, C. T.; Mayo, J. T.; Yu, W. W.; Prakash, A.; Falkner, J. C.; Yean, S.; Cong, L.; Shipley, H. J.; Kan, A.; Tomson, M., et al. Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 2006, 314, 964–967.

21

Yu, X. Y.; Luo, T.; Jia, Y.; Zhang, Y. X.; Liu, J. H.; Huang, X. J. Porous hierarchically micro-/nanostructured MgO: Morphology control and their excellent performance in As(Ⅲ) and As(Ⅴ) removal. J. Phys. Chem. C 2011, 115, 22242–22250.

22

Cao, C. Y.; Cui, Z. M.; Chen, C. Q.; Song, W. G.; Cai, W. Ceria hollow nanospheres produced by a template-free microwave-assisted hydrothermal method for heavy metal ion removal and catalysis. J. Phys. Chem. C 2010, 114, 9865–9870.

23

Violante, A.; Pigna, M.; Del Gaudio, S.; Cozzolino, V.; Banerjee, D. Coprecipitation of arsenate with metal oxides. 3. Nature, mineralogy, and reactivity of iron(Ⅲ)–aluminum precipitates. Environ. Sci. Technol. 2009, 43, 1515–1521.

24

Yantasee, W.; Warner, C. L.; Sangvanich, T.; Addleman, R. S.; Carter, T. G.; Wiacek, R. J.; Fryxell, G. E.; Timchalk, C.; Warner, M. G. Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles. Environ. Sci. Technol. 2007, 41, 5114–5119.

25

Yoshitake, H.; Yokoi, T.; Tatsumi, T. Adsorption of chromate and arsenate by amino-functionalized MCM-41 and SBA-1. Chem. Mater. 2002, 14, 4603–4610.

26

Yoshitake, H.; Yokoi, T.; Tatsumi, T. Adsorption behavior of arsenate at transition metal cations captured by amino-functionalized mesoporous silicas. Chem. Mater. 2003, 15, 1713–1721.

27

Yee, N.; Benning, L. G.; Phoenix, V. R.; Ferris, F. G. Characterization of metal–cyanobacteria sorption reactions: A combined macroscopic and infrared spectroscopic investigation. Environ. Sci. Technol. 2003, 38, 775–782.

28

Ge, F.; Li, M. M.; Ye, H.; Zhao, B. X. Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles. J. Hazard. Mater. 2012, 211–212, 366–372.

29

Park, K. H.; Choi, J.; Chun, J.; Kim, H. J.; Son, S. U. Low-temperature synthesis of ultrathin Sb2S5 nanofibers and their application as highly selective Pb-adsorbents in water. Chem. Commun. 2008, 1659–1661.

30

Koehler, F. M.; Rossier, M.; Waelle, M.; Athanassiou, E. K.; Limbach, L. K.; Grass, R. N.; Gunther, D.; Stark, W. J. Magnetic EDTA: Coupling heavy metal chelators to metal nanomagnets for rapid removal of cadmium, lead and copper from contaminated water. Chem. Commun. 2009, 4862–4864.

31

An, F. Q.; Gao, B. J.; Dai, X.; Wang, M.; Wang, X. H. Efficient removal of heavy metal ions from aqueous solution using salicylic acid type chelate adsorbent. J. Hazard. Mater. 2011, 192, 956–962.

32

Gao, Q. S.; Chen, P.; Zhang, Y. H.; Tang, Y. Synthesis and characterization of organic–inorganic hybrid GeOx/ethylenediamine nanowires. Adv. Mater. 2008, 20, 1837–1842.

33

Gao, M. R.; Yao, W. T.; Yao, H. B.; Yu, S. H. Synthesis of unique ultrathin lamellar mesostructured CoSe2–amine (protonated) nanobelts in a binary solution. J. Am. Chem. Soc. 2009, 131, 7486–7487.

34

Yao, W.; Yu, S. H.; Huang, X. Y.; Jiang, J.; Zhao, L. Q.; Pan, L.; Li, J. Nanocrystals of an inorganic–organic hybrid semiconductor: Formation of uniform nanobelts of [ZnSe](diethylenetriamine)0.5 in a ternary Solution. Adv. Mater. 2005, 17, 2799–2802.

35

Yao, W. T.; Yu, S. H.; Wu, Q. S. From mesostructured wurtzite ZnS–nanowire/amine nanocomposites to ZnS nanowires exhibiting quantum size effects: A mild solution chemistry approach. Adv. Funct. Mater. 2007, 17, 623–631.

36

Polleux, J.; Pinna, N.; Antonietti, M.; Niederberger, M. Growth and assembly of crystalline tungsten oxide nanostructures assisted by bioligation. J. Am. Chem. Soc. 2005, 127, 15595–15601.

37

Yao, H. B.; Gao, M. R.; Yu, S. H. Small organic molecule templating synthesis of organic–inorganic hybrid materials: Their nanostructures and properties. Nanoscale 2010, 2, 322–334.

38

Zhang, Y.; Dalpian, G. M.; Fluegel, B.; Wei, S. H.; Mascarenhas, A.; Huang, X. Y.; Li, J.; Wang, L. W. Novel approach to tuning the physical properties of organic–inorganic hybrid semiconductors. Phys. Rev. Lett. 2006, 96, 026405.

39

Hu, X.; Ji, Q.; Hill, J. P.; Ariga, K. Large-scale synthesis of WOx–EDA nanobelts and their application as photoswitches. CrystEngComm 2011, 13, 2237–2241.

40

Zheng, H.; Ou, J. Z.; Strano, M. S.; Kaner, R. B.; Mitchell, A.; Kalantar-zadeh, K. Nanostructured tungsten oxide–properties, synthesis, and applications. Adv. Funct. Mater. 2011, 21, 2175–2196.

41

Chong, S. V.; Ingham, B.; Tallon, J. L. Novel materials based on organic–tungsten oxide hybrid systems I: Synthesis and characterization. Curr. Appl. Phys. 2004, 4, 197–201.

42

Islah-u-din; Chong, S. V.; Telfer, S. G.; Kennedy, J.; Jameson, G. B.; Waterland, M. R.; Tallon, J. L. Influence of doping on hybrid organic–inorganic WO3(4, 4'-bipyridyl)0.5 materials. J. Phys. Chem. C 2012, 116, 3787–3792.

43

Chen, D.; Sugahara, Y. Tungstate-based inorganic–organic hybrid nanobelts/nanotubes with lamellar mesostructures: Synthesis, characterization, and formation mechanism. Chem. Mater. 2007, 19, 1808–1815.

44

Ingham, B.; Chong, S. V.; Tallon, J. L. Novel materials based on organic–tungsten oxide hybrid systems Ⅱ: Electronic properties of the W–O framework. Curr. Appl. Phys. 2004, 4, 202–205.

45

Ingham, B.; Chong, S. V.; Tallon, J. L. Layered tungsten oxide-based hybrid materials incorporating transition metal ions. Curr. Appl. Phys. 2006, 6, 553–556.

46

Ingham, B.; Chong, S. V.; Tallon, J. L. Layered tungsten oxide-based organic–inorganic hybrid materials: An infrared and Raman study. J Phys. Chem. B 2005, 109, 4936–4940.

47

Loopstra, B. O.; Rietveld, H. M. Further refinement of the structure of WO3. Acta Crystallogr. Sect. B 1969, 25, 1420–1421.

48

Aird, A.; Domeneghetti, M.; Mazzi, F.; Tazzoli, V.; Salje, E. Sheet superconductivity in WO3–x: Crystal structure of the tetragonal matrix. J. Phys. : Condens. Matter. 1998, 10, L569–L574.

49

Vogt, T.; Woodward, P. M.; Hunter, B. A. The high-temperature phases of WO3. J. Solid State Chem. 1999, 144, 209–215.

50

Mi, Q. X.; Ping, Y.; Li, Y.; Cao, B. F.; Brunschwig, B. S.; Khalifah, P. G.; Galli, G. A.; Gray, H. B.; Lewis, N. S. Thermally stable N2-intercalated WO3 photoanodes for water oxidation. J. Am. Chem. Soc. 2012, 134, 18318–18324.

51

Hjelm, A.; Granqvist, C. G.; Wills, J. M. Electronic structure and optical properties of WO3, LiWO3, NaWO3, and HWO3. Phys. Rev. B 1996, 54, 2436–2445.

52

Li, Y.; Liao, H.; Ding, Y.; Fan, Y.; Zhang, Y.; Qian, Y. Solvothermal elemental direct reaction to CdE (E = S, Se, Te) semiconductor nanorod. Inorg. Chem. 1999, 38, 1382–1387.

53

Deng, Z. X.; Li, L. B.; Li, Y. D. Novel inorganic–organic-layered structures: Crystallographic understanding of both phase and morphology formations of one-dimensional CdE (E = S, Se, Te) nanorods in ethylenediamine. Inorg. Chem. 2003, 42, 2331–2341.

54

Li, Y. D.; Liao, H. W.; Ding, Y.; Qian, Y. T.; Yang, L.; Zhou, G. E. Nonaqueous synthesis of CdS nanorod semiconductor. Chem. Mater. 1998, 10, 2301–2303.

55

Chen, D. L.; Gao, L.; Yasumori, A.; Kuroda, K.; Sugahara, Y. Size- and shape-controlled conversion of tungstate-based inorganic–organic hybrid belts to WO3 nanoplates with high specific surface areas. Small 2008, 4, 1813–1822.

56

Langmuir, I. The constitution and fundamental properties of solids and liquids. Part I. Solids. J. Am. Chem. Soc. 1916, 38, 2221–2295.

57

Li, H.; Li, W.; Zhang, Y.; Wang, T. S.; Wang, B.; Xu, W.; Jiang, L.; Song, W. G.; Shu, C. Y.; Wang, C. R. Chrysanthemum-like α-FeOOH microspheres produced by a simple green method and their outstanding ability in heavy metal ion removal. J. Mater. Chem. 2011, 21, 7878–7881.

58

Wang, B.; Wu, H.; Yu, L.; Xu, R.; Lim, T. T.; Lou, X. W. Template-free formation of uniform urchin-like α-FeOOH hollow spheres with superior capability for water treatment. Adv. Mater. 2012, 24, 1111–1116.

59

Li, W.; Zhang, S.; Shan, X. Q. Surface modification of goethite by phosphate for enhancement of Cu and Cd adsorption. Colloids. Surf. A 2007, 293, 13–19.

60

Engates, K.; Shipley, H. Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: Effect of particle size, solid concentration, and exhaustion. Environ. Sci. Pollut. Res. 2011, 18, 386–395.

61

Wu, N.; Wei, H. H.; Zhang, L. Z. Efficient removal of heavy metal ions with biopolymer template synthesized mesoporous titania beads of hundreds of micrometers size. Environ. Sci. Technol. 2011, 46, 419–425.

62

Zhang, Y. X.; Yu, X. Y.; Jin, Z.; Jia, Y.; Xu, W. H.; Luo, T.; Zhu, B. J.; Liu, J. H.; Huang, X. J. Ultra high adsorption capacity of fried egg jellyfish-like γ-AlOOH(boehmite)@SiO2/Fe3O4 porous magnetic microspheres for aqueous Pb(Ⅱ) removal. J. Mater. Chem. 2011, 21, 16550–16557.

63

Wei, Y.; Yang, R.; Zhang, Y. X.; Wang, L.; Liu, J. H.; Huang, X. J. High adsorptive γ-AlOOH(boehmite)@ SiO2/Fe3O4 porous magnetic microspheres for detection of toxic metal ions in drinking water. Chem. Commun. 2011, 47, 11062–11064.

64

Liu, J. F.; Zhao, Z. S.; Jiang, G. B. Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ. Sci. Technol. 2008, 42, 6949–6954.

65

Tran, H. H.; Roddick, F. A.; O'Donnell, J. A. Comparison of chromatography and desiccant silica gels for the adsorption of metal ions—I. Adsorption and kinetics. Water Res. 1999, 33, 2992–3000.

66

Yuan, L. Y.; Liu, Y. L.; Shi, W. Q.; Li, Z. J.; Lan, J. H.; Feng, Y. X.; Zhao, Y. L.; Yuan, Y. L.; Chai, Z. F. A novel mesoporous material for uranium extraction, dihydroimidazole functionalized SBA-15. J. Mater. Chem. 2012, 22, 17019–17026.

67

Chee Kimling, M.; Scales, N.; Hanley, T. L.; Caruso, R. A. Uranyl-sorption properties of amorphous and crystalline TiO2/ZrO2 millimeter-sized hierarchically porous beads. Environ. Sci. Technol. 2012, 46, 7913–7920.

68

Jung, Y.; Kim, S.; Park, S. J.; Kim, J. M. Preparation of functionalized nanoporous carbons for uranium loading. Colloids Surf. A 2008, 313–314, 292–295.

69

Qu, J.; Li, W.; Cao, C. Y.; Yin, X. J.; Zhao, L.; Bai, J.; Qin, Z.; Song, W. G. Metal silicate nanotubes with nanostructured walls as superb adsorbents for uranyl ions and lead ions in water. J. Mater. Chem. 2012, 22, 17222–17226.

70

Tabushi, I.; Kobuke, Y.; Nishiya, T. Extraction of uranium from seawater by polymer-bound macrocyclic hexaketone. Nature 1979, 280, 665–666.

71

Milja, T. E.; Prathish, K. P.; Prasada Rao, T. Synthesis of surface imprinted nanospheres for selective removal of uranium from simulants of Sambhar salt lake and ground water. J. Hazard. Mater. 2011, 188, 384–390.

72

Angeletti, E.; Canepa, C.; Martinetti, G.; Venturello, P. Amino groups immobilized on silica gel: An efficient and reusable heterogeneous catalyst for the Knoevenagel condensation. J. Chem. Soc. Perkin Trans. 1 1989, 105–107.

73

Wang, X.; Lin, K. S. K.; Chan, J. C. C.; Cheng, S. Direct synthesis and catalytic applications of ordered large pore aminopropyl-functionalized SBA-15 mesoporous materials. J. Phys. Chem. B 2005, 109, 1763–1769.

74

Wang, S. G. Amino groups immobilized on MCM-48: An efficient heterogeneous catalyst for the Knoevenagel reaction. Catal. Commun. 2003, 4, 469–470.

Nano Research
Pages 903-916
Cite this article:
Li W, Xia F, Qu J, et al. Versatile inorganic–organic hybrid WOx–ethylenediamine nanowires: Synthesis, mechanism and application in heavy metal ion adsorption and catalysis. Nano Research, 2014, 7(6): 903-916. https://doi.org/10.1007/s12274-014-0452-9

856

Views

60

Crossref

N/A

Web of Science

62

Scopus

5

CSCD

Altmetrics

Received: 10 December 2013
Revised: 05 March 2014
Accepted: 16 March 2014
Published: 26 May 2014
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Return