Supported metal catalysts are widely used in the modern chemical industry. The electronic interaction between supports and active components is of great significance for heterogeneous catalysis. Graphdiyne (GDY), a new type of carbon allotrope with sp-hybridized carbon atoms, π conjugate structure, and electron transmission capability, is a promising candidate as catalyst support. Recent years have witnessed the rapid progress of GDY-supported metal catalysts for different catalysis reactions. Considering that most processes in the current chemical industry are thermocatalytic reactions, we herein give an overview about the advances and particular characteristics of GDY-supported catalysts in these reactions. The geometric structure and electronic properties of GDY are first introduced. Then, the synthesis methods for GDY-supported metal catalysts and their applications in thermocatalytic reactions are discussed, in which the effect of electronic interaction on catalytic performance is highlighted. Finally, the current challenges and future directions of GDY-supported metal catalysts for thermocatalysis are proposed. It is expected that this review will enrich our understanding of the advances of GDY as a superior support for metal catalysts in thermocatalytic reactions.
- Article type
- Year
- Co-author
MXenes are promising supports for anchoring metal single atoms due to their versatile composition, well-defined nanostructures, and suitable conductivity. However, metal single atoms are usually coordinated with surface terminal groups (-O, -OH, -Cl, etc.) of MXenes via conventional wet-impregnation, resulting in limited electronic structure modification. Through a NiCl2 molten salt etching method, we observed that Ni single atoms could be in-situ doped in the lattice of MXenes analogue TiC0.5N0.5 support (denoted as Ni1/TiC0.5N0.5), resulting in much larger charge transfer from Ni atoms to adjacent Ti atoms, and thus increasing the electronic density of these Ti atoms. When used for NO2 sensing, Ni1/TiC0.5N0.5 exhibited excellent response sensitivity (ultra-low limit of detection ~ 10 ppb), selectivity, and good stability at room temperature. This study provides an effective strategy for producing MXenes analogue supported metal single atoms for potential application in gas sensing.
Single-atom catalysts (SACs) with the advantages of homogeneous and heterogeneous catalysts have become a hot-spot in catalysis field. However, for lack of metal–metal bond in SACs, H2 has to go through heterolytic dissociation pathway, which has higher barrier than homolytic dissociation pathway, and thus limits the hydrogenation activity of SACs. Herein, we propose and demonstrate through constructing synergistic iridium single atoms and nanoparticles co-existed catalyst (denoted as Ir1+NPs/CMK) to boost the catalytic activity of quinoline hydrogenation. Both experimental and density functional theory calculation results confirm that Ir1 single sites activate quinoline, while Ir nanoparticles boost hydrogen dissociation. H atoms generated at Ir nanoparticles migrate to the quinoline bounded Ir1 single sites to complete hydrogenation. The Ir1+NPs/CMK catalyst exhibits much higher reactivity with turnover frequency of 7,800 h−1 than those counterpart Ir1/CMK and IrNPs/CMK catalysts, and is 20,000 times higher activity of commercial Ir/C benchmark catalyst for hydrogenation of quinoline under the same reaction conditions. This synergistic catalysis strategy between single atoms and nanoparticles provides a solution to further improve the performance of SACs for hydrogenation.
Iron oxide is a promising anode material for lithium ion batteries, but it usually exhibits poor electrochemical property because of its poor conductivity and large volume variation during the lithium uptake and release processes. In this work, a double protection strategy for improving electrochemical performance of Fe3O4 nanoparticles through the use of decoration with multi-walled carbon nanotubes and reduced graphene oxides networks has been developed. The resulting MWCNTs-Fe3O4-rGO nanocomposites exhibited excellent cycling performance and rate capability in comparison with MWCNTs-Fe3O4, MWCNTs-Fe3O4 physically mixed with rGO, and Fe3O4-rGO. A reversible capacity of ~680 mA·h·g-1 can be maintained after 100 cycles under a current density of 200 mA·g-1.
Inorganic–organic hybrid WOx-ethylenediamine (WOx–EDA) nanowires have been produced by a simple, low-cost and high-yield solvothermal method. These WOx–EDA hybrid nanowires have unique lamellar mesostructures with an alternate stacking of an interconnected [WO6] octahedral layer and a monolayer of ethylenediamine molecules. This hybrid structure integrated the functionality of ethylenediamine with the stability of the WOx frameworks. In situ synchrotron-radiation X-ray diffraction is used to elucidate a possible formation mechanism of the hybrid WOx–EDA. The nanowire morphology, lamellar structure and abundant functional amino groups endow them with versatile abilities. For example, in heavy metal ion adsorption the WOx–EDA nanowires display exceptional adsorption capabilities of 925 mg·g–1 for Pb2+ and 610 mg·g–1 for UO22+. The nanowires also show outstanding stability and activity as a heterogeneous base catalyst in the Knoevenagel condensation reaction at room temperature. The catalyst can be recycled and reused for 20 cycles with nearly 100% yields. This study provides a new strategy to design inorganic–organic hybrid materials, and offers a multifunctional material that is a highly efficient adsorbent and sustainable catalyst.
Anatase polyhedral materials with a preponderance of exposed {001} facets have been produced using (NH4)2TiF6 and water as raw materials. The crystallographic structure and the growth mechanism of the anatase TiO2 product were investigated systematically by XRD (X-ray diffraction), scanning electron microscopy (SEM), TEM (transmission electron microscope), and ultraviolet (UV) visible and photoluminescence spectroscopy. The products exhibited significantly higher activities than commercial P25 titania nanoparticles in the photocatalytic degradation of methylene blue dye. Moreover, the materials have large particle sizes and are very robust, making them suited for practical uses.
An in situ method has been used to load Cu2O nanoparticles on the surface of a hydroxyl group rich TiO2 precursor. Cu2O nanoparticles are formed by in situ reduction of Cu(OH)2 with Sn2+ ions linked to the surface of the TiO2 precursor. The initial Cu2O nanoparticles serve as seeds for subsequent particle growth. The resulting Cu2O nanoparticles are evenly dispersed on the surface of the TiO2 precursor, and are heat and air stable. The as-prepared composite is an excellent catalyst for Ullmann type cross coupling reactions of aryl halides with phenol. The composite catalyst also showed good stability, remaining highly active after five consecutive runs.