Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Fabrication of high-quality all-graphene devices with low contact resistances

Rong Yang1,§Shuang Wu1,§Duoming Wang1Guibai Xie1Meng Cheng1Guole Wang1Wei Yang1Peng Chen1Dongxia Shi1Guangyu Zhang1,2()
Beijing National Laboratory for Condensed Matter Physics and Institute of PhysicsChinese Academy of SciencesBeijing100190China
Collaborative Innovation Center of Quantum MatterBeijing100190China

§These authors contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

All-graphene devices are new class of graphene devices with simple layouts and low contact resistances. Here we report a clean fabrication strategy for all-graphene devices via a defect-assisted anisotropic etching. The as-fabricated graphene is free of contamination and retains the quality of pristine graphene. The contact resistance at room temperature (RT) between a bilayer graphene channel and a multilayer graphene electrode can be as low as ~5 Ω·μm, the lowest ever achieved experimentally. Our results suggest the feasibility of employing such all-graphene devices in high performance carbon-based integrated circuits.

Electronic Supplementary Material

Download File(s)
12274_2014_504_MOESM1_ESM.pdf (1.7 MB)

References

1

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

2

Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.

3

Zhao, P.; Zhang, Q.; Jena, D.; Koswatta, S. O. Influence of metal-graphene contact on the operation and scalability of graphene field-effect transistors. IEEE T. Electron Dev. 2011, 58, 3170–3178.

4
Nagashio, K.; Nishimura, T.; Kita, K.; Toriumi, A. Metal/graphene contact as a performance killer of ultra-high mobility graphene analysis of intrinsic mobility and contact resistance. In Proceedings of IEEE International Electron Devices Meeting, Baltimore, USA, 2009, pp 565–568.https://doi.org/10.1109/IEDM.2009.5424297
5

Xia, F. N.; Perebeinos, V.; Lin, Y. M.; Wu Y. Q.; Avouris, P. The origins and limits of metal-graphene junction resistance. Nat. Nanotechnol. 2011, 6, 179–184.

6

Russoa, S.; Craciuna, M. F.; Yamamoto, M.; Morpurgo, A. F.; Tarucha, S. Contact resistance in graphene-based devices. Physica E 2010, 42, 677–679.

7

Khatami, Y.; Li, H.; Xu, C.; Banerjee, K. Metal-to-multilayer-graphene contact part I: Contact resistance modeling. IEEE T. Electron Dev. 2012, 59, 2444–2460.

8

Liu, G. X.; Rumyantsev, S.; Shur, M.; Balandin, A. A. Graphene thickness-graded transistors with reduced electronic noise. Appl. Phys. Lett. 2012, 100, 033103.

9

Yang, R.; Zhang, L. C.; Wang, Y.; Shi, Z. W.; Shi, D. X.; Gao, H. J.; Wang, E.; Zhang, G. Y. An anisotropic etching effect in the graphene basal plane. Adv. Mater. 2010, 22, 4014–4019.

10

Shi, Z. W.; Yang, R.; Zhang, L. C.; Wang, Y.; Liu, D. H.; Shi, D. X.; Wang, E.; Zhang, G. Y. Patterning graphene with zigzag edges by self-aligned anisotropic etching. Adv. Mater. 2011, 23, 3061–3065.

11

Park, J. U.; Nam, S. W.; Lee, M. S.; Lieber, C. M. Synthesis of monolithic graphene-graphite integrated electronics. Nat. Mater. 2012, 11, 120–125.

12

Dimiev, A.; Kosynkin, D. V.; Sinitskii, A.; Slesarev, A.; Sun, Z. Z.; Tour, J. M. Layer-by-layer removal of graphene for device patterning. Science 2011, 331, 1168–1172.

13

Lim, W. S.; Kim, Y. Y.; Kim, H.; Jang, S.; Kwon, N.; Park, B. J.; Ahn, J. H.; Chung, I.; Hong, B. H.; Yeom, G. Y. Atomic layer etching of graphene for full graphene device fabrication. Carbon 2012, 50, 429–435.

14

Han, G. H.; Chae, S. J.; Kim, E. S.; Gunes, F.; Lee, H.; Lee, S. W.; Lee, S. Y.; Lim, S. C.; Jeong, H. K.; Jeong, M. S. et al. Laser thinning for monolayer graphene formation: Heat sink and interference effect. ACS Nano 2011, 5, 263–268.

15

Jones, J. D.; Shah, R. K.; Verbeck, G. F.; Perez, J. M. The removal of single layers from multi-layer graphene by low energy electron stimulation. Small 2012, 8, 1066–1072.

16

Yang, X. C.; Tang, S. J.; Ding, G. Q.; Xie, X. M.; Jiang M. H.; Huang, F. Q. Layer-by-layer thinning of graphene by plasma irradiation and post-annealing. Nanotechnology 2012, 23, 025704.

17

Hazra, K. S.; Rafiee, J.; Rafiee, M. A.; Mathur, A.; Roy, S. S.; McLauhglin, J.; Koratkar, N.; Misra, D. S. Thinning of multilayer graphene to monolayer graphene in a plasma environment. Nanotechnology 2011, 22, 025704.

18

Shen, C.; Huang, G. S.; Cheng, Y. C.; Cao, R. G.; Ding, F.; Schwingenschlögl, U.; Mei, Y. F. Thinning and functionalization of few-layer graphene sheets by CF4 plasma treatment. Nanoscale Res. Lett. 2012, 7, 268.

19

Wu, S.; Yang, R.; Shi D. X.; Zhang, G. Y. Identification of structural defects in graphitic materials by gas-phase anisotropic etching. Nanoscale 2012, 4, 2005–2009.

20

Casiraghi, C.; Hartschuh, A.; Qian, H.; Piscanec, S.; Georgi, C.; Fasoli, A.; Novoselov, K. S.; Basko, D. M.; Ferrari, A. C. Raman spectroscopy of graphene edges. Nano Lett. 2009, 9, 1433–1441.

21

Yang, R.; Shi, Z. W.; Zhang, L. C.; Shi, D. X.; Zhang, G. Y. Observation of Raman G-peak split for graphene nanoribbons with hydrogen-terminated zigzag edges. Nano Lett. 2011, 11, 4083–4088.

22

Ferrari, A. C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57.

23

Lehtinen, O.; Kotakoski, J.; Krasheninnikov, A. V.; Tolvanen, A.; Nordlund, K.; Keinonen, J. Effects of ion bombardment on a two-dimensional target: Atomistic simulations of graphene irradiation. Phys. Rev. B 2010, 81, 153401.

24

Mathew, S.; Chan, T. K.; Zhan, D.; Gopinadhan, K.; Barman, A. R.; Breese, M. B. H.; Dhar, S.; Shen, Z. X.; Venkatesan, T.; Thong, J. T. L. The effect of layer number and substrate on the stability of graphene under MeV protonbeam irradiation. Carbon 2011, 49, 1720–1726.

25

Wang, Q. H.; Jin, Z.; Kim, K. K.; Hilmer, A. J.; Paulus, G. L. C.; Shih, C. J.; Ham, M. H.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Kong, J. et al. Understanding and controlling the substrate effect on graphene electron-transfer chemistry via reactivity imprint lithography. Nat. Chem. 2012, 4, 724–732.

26

Kim, S.; Nah, J.; Jo, I.; Shahrjerdi, D.; Colombo, L.; Yao, Z.; Tutuc, E.; Banerjee, S. K. Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric. Appl. Phys. Lett. 2009, 94, 062107.

27

Ishigami, M.; Chen, J. H.; Cullen, W. G.; Fuhrer, M. S.; Williams, E. D. Atomic structure of graphene on SiO2. Nano Lett. 2007, 7, 1643–1648.

28

Lin, Y. C.; Lu, C. C.; Yeh, C. H.; Jin, C. H.; Suenaga, K.; Chiu, P. W. Graphene annealing: How clean can it be? Nano Lett. 2012, 12, 414–419.

29

Huard, B.; Stander, N.; Sulpizio, J. A.; Goldhaber-Gordon, D. Evidence of the role of contacts on the observed electron-hole asymmetry in graphene. Phys. Rev. B 2008, 78, 121402.

30

Datta, S. Electronic Transport in Mescoscopic Systems; Cambridge University Press: Cambridge, 1995; pp 57–85.

31

Partoens, B.; Peeters, F. M. From graphene to graphite: Electronic structure around the K point. Phys. Rev. B 2006, 74, 075404.

32

Katsnelson, M. I.; Novoselov, K. S.; Geim, A. K. Chiral tunneling and the Klein paradox in graphene. Nat. Phys. 2006, 2, 620–625.

Nano Research
Pages 1449-1456
Cite this article:
Yang R, Wu S, Wang D, et al. Fabrication of high-quality all-graphene devices with low contact resistances. Nano Research, 2014, 7(10): 1449-1456. https://doi.org/10.1007/s12274-014-0504-1
Metrics & Citations  
Article History
Copyright
Return