AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Optoelectronic switching of nanowire-based hybrid organic/oxide/semiconductor field-effect transistors

Eunhye Baek1Sebastian Pregl1,2Mehrdad Shaygan3Lotta Römhildt1Walter M. Weber2,4Thomas Mikolajick2,4Dmitry A. Ryndyk1,2,5Larysa Baraban1( )Gianaurelio Cuniberti1,2,5( )
Institute for Materials Science and Max Bergmann Center of BiomaterialsTU Dresden01062Dresden, Germany
Center for Advancing Electronics DresdenTU Dresden01062Dresden, Germany
Division of IT Convergence EngineeringPohang University of Science and TechnologyPohangKorea
NaMLab GmbHN?thnitzer Strasse 6401187Dresden, Germany
Dresden Center for Computational Materials ScienceTU Dresden01062Dresden, Germany
Show Author Information

Graphical Abstract

Abstract

A novel photosensitive hybrid field-effect transistor (FET) which consists of a multiple-shell of organic porphyrin film/oxide/silicon nanowires is presented. Due to the oxide shell around the nanowires, photoswitching of the current in the hybrid nanodevices is guided by the electric field effect, induced by charge redistribution within the organic film. This principle is an alternative to a photoinduced electron injection, valid for devices relying on direct junctions between organic molecules and metals or semiconductors. The switching dynamics of the hybrid nanodevices upon violet light illumination is investigated and a strong dependence on the thickness of the porphyrin film wrapping the nanowires is found. Furthermore, the thickness of the organic films is found to be a crucial parameter also for the switching efficiency of the nanowire FET, represented by the ratio of currents under light illumination (ON) and in dark conditions (OFF). We suggest a simple model of porphyrin film charging to explain the optoelectronic behavior of nanowire FETs mediated by organic film/oxide/semiconductor junctions.

Electronic Supplementary Material

Download File(s)
12274_2014_608_MOESM1_ESM.pdf (1.5 MB)

References

1

Sanchez, C.; Julián, B.; Belleville, P.; Popall, M. Applications of hybrid organic-inorganic nanocomposites. J. Mater. Chem. 2005, 15, 3559–3592.

2

Inganäs, O. Hybrid electronics and electrochemistry with conjugated polymers. Chem. Soc. Rev. 2010, 39, 2633–2642.

3

Joachim, C.; Gimzewski, J. K.; Aviram, A. Electronics using hybrid/molecular and mono-molecular devices. Nature 2000, 408, 541–548.

4

Crone, B.; Dodabalapur, A.; Lin, Y. Y.; Filas, R. W.; Bao, Z.; LaDuca, A.; Sarpeshkar, R.; Katz, H. E.; Li, W. Large-scale complementary integrated circuits based on organic transistors. Nature 2000, 403, 521–523.

5

Halik, M.; Klauk, H.; Zschieschang, U.; Schmid, G.; Dehm, C.; Schütz, M.; Maisch, S.; Effenberger, F.; Brunnbauer M.; Stellacci, F. Low-voltage organic transistors with an amorphous molecular gate dielectric. Nature 2004, 431, 963–966.

6

Günes, S.; Neugebauer, H.; Sariciftci, N. S. Conjugated polymer-based organic solar cells. Chem. Rev. 2007, 107, 1324–1338.

7

Cheng, Y. J.; Yang, S. H.; Hsu, C. S. Synthesis of conjugated polymers for organic solar cell applications. Chem. Rev. 2009, 109, 5868–5923.

8

Wasielewski, M. R. Photoinduced electron transfer in supramolecular systems for artificial photosynthesis. Chem. Rev. 1992, 92, 435–461.

9

Imahori, H. Porphyrin-fullerene linked systems as artificial photosynthetic mimics. Org. Biomol. Chem. 2004, 2, 1425–1433.

10

Fukuzumi, S. Development of bioinspired artificial photosynthetic systems. Phys. Chem. Chem. Phys. 2008, 10, 2283–2297.

11

Ozin, G. A.; Manners, I.; Fournier-Bidoz, S.; Arsenault, A. Dream nanomachines. Adv. Mater. 2005, 17, 3011–3018.

12

Qin, Y.; Wang, X. D.; Wang, Z. L. Microfibre-nanowire hybrid structure for energy scavenging. Nature 2009, 451, 809–813.

13

Donelan, J. M.; Li, Q.; Naing, V.; Hoffer, J. A.; Weber, D. J.; Kuo, A. D. Biomechanical energy harvesting: Generating electricity during walking with minimal user effort. Science 2008, 319, 807–810.

14

Dawson, J. H. Probing structure-function relations in heme-containing oxygenases and peroxidases. Science 1988, 240, 433–439.

15

Gust, D.; Moore, T. A.; Moore, A. L. Molecular mimicry of photosynthetic energy and electron transfer. Acc. Chem. Res. 1993, 26, 198–205.

16

Martínez-Díaz, M. V.; de la Torrea, G.; Torres, T. Lighting porphyrins and phthalocyanines for molecular photovoltaics. Chem. Commun. 2010, 46, 7090–7108.

17

Ishii, H.; Sugiyama, K.; Ito, E.; Seki, K. Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Adv. Mater. 1999, 11, 605–625.

18

Liu, Z. M.; Yasseri, A. A.; Lindsey, J. S.; Bocian, D. F. Molecular memories that survive silicon device processing and real-world operation. Science 2003, 302, 1543–1545.

19

Seol, M. L.; Choi, S. J.; Kim, C. H.; Moon, D. I.; Choi, Y. K. Porphyrin silicon hybrid field-effect transistor with individually addressable top-gate structure. ACS Nano 2012, 6, 183–189.

20

Star, A.; Lu, Y.; Bradley, K.; Grüner, G. Nanotube optoelectronic memory devices. Nano Lett. 2004, 4, 1587–1591.

21

Li, C.; Ly, J.; Lei, B.; Fan, W.; Zhang, D. H.; Han, J.; Meyyappan, M.; Thompson, M.; Zhou, C. W. Data storage studies on nanowire transistors with self-assembled porphyrin molecules. J. Phys. Chem. B 2004, 108, 9646–9649.

22

Choi, S. J.; Lee, Y. C.; Seol, M. L.; Ahn, J. H.; Kim, S.; Moon, D. I.; Han, J. W.; Mann, S.; Yang, J. W.; Choi, Y. K. Bio-inspired complementary photoconductor by porphyrin-coated silicon nanowires. Adv. Mater. 2011, 23, 3979–3983.

23

Winkelmann, C. B.; Ionica, I.; Chevalier, X.; Royal, G.; Bucher, C.; Bouchiat, V. Optical switching of porphyrin-coated silicon nanowire field effect transistors. Nano Lett. 2007, 7, 1454–1458.

24

Seol, M. L.; Choi, S. J.; Choi, J. M.; Ahn, J. H.; Choi, Y. K. Hybrid porphyrin silicon nanowire field-effect transistor by opto-electrical excitation. ACS Nano 2012, 6, 7885–7892.

25

Borghetti, J.; Derycke, V.; Lenfant, S.; Chenevier, P.; Filoramo, A.; Goffman, M.; Vuillaume, D.; Bourgoin, J. P. Optoelectronic switch and memory devices based on polymer-functionalized carbon nanotube transistors. Adv. Mater. 2006, 18, 2535–2540.

26

Léonard, F.; Talin, A. A. Electrical contacts to one- and two-dimensional nanomaterials. Nat. Nanotechnol. 2011, 6, 773–783.

27

Pregl, S.; Weber, W. M.; Nozaki, D.; Kunstmann, J.; Baraban, L.; Opitz, J.; Mikolajick, T.; Cuniberti, G. Parallel arrays of Schottky barrier nanowire field effect transistors: Nanoscopic effects for macroscopic current output. Nano Res. 2013, 6, 381–388.

28

Weber, W. M.; Geelhaar, L.; Graham, A. P.; Unger, E.; Duesberg, G. S.; Liebau, M.; Pamler, W.; Chèze, C.; Riechert, H.; Lugli, P. et al. Silicon-nanowire transistors with intruded nickel-silicide contacts. Nano Lett. 2006, 6, 2660–2666.

29

Nozaki, D.; Kunstmann, J.; Z?rgiebel, F.; Weber, W. M.; Mikolajick, T.; Cuniberti, G. Multiscale modeling of nanowire-based Schottky-barrier field-effect transistors for sensor applications. Nanotechnology 2011, 22, 325703.

30

Martin, D.; Heinzig, A.; Grube, M.; Geelhaar, L.; Mikolajick, T.; Riechert, H.; Weber, W. M. Direct probing of Schottky barriers in Si nanowire Schottky barrier field effect transistors. Phys. Rev. Lett. 2011, 107, 216807.

31

Robinson, G. W.; Frosch R. P. Electronic excitation transfer and relaxation. J. Chem. Phys. 1963, 38, 1187–1203.

32

Liao, M. S.; Scheinera, S. Electronic structure and bonding in metal porphyrins, metal=Fe, Co, Ni, Cu, Zn. J. Chem. Phys. 2002, 117, 205–219.

33

Blase, X.; Attaccalite, C.; Olevano, V. First-principles GW calculations for fullerenes, porphyrins, phtalocyanine, and other molecules of interest for organic photovoltaic applications. Phys. Rev. B 2011, 83, 115103.

34

Refaely-Abramson, S.; Baer, R.; Kronik, L. Fundamental and excitation gaps in molecules of relevance for organic photovoltaics from an optimally tuned range-separated hybrid functional. Phys. Rev. B 2011, 84, 075144.

35

Savenije, T. J.; Goossens, A. Hole transport in porphyrin thin films. Phys. Rev. B 2001, 64, 115323.

36

Kerp, H. R.; Donker, H.; Koehorst, R. B. M.; Schaafsma, T. J.; van Faassen, E. E. Exciton transport in organic dye layers for photovoltaic applications. Chem. Phys. Lett. 1998, 298, 302–308.

37

Lyons, B. P.; Monkman, A. P. The role of exciton diffusion in energy transfer between polyfluorene and tetraphenyl porphyrin. Phys. Rev. B 2005, 71, 235201.

38

Yamashifa, K.; Harima, Y.; Iwashima, H. Evaluation of exciton diffusion lengths and apparent barrier widths for metal/porphyrin Schottky barrier cells by use of the optical filtering effect. J. Phys. Chem. 1987, 91, 3055–3059.

39

Cerullo, G.; Stagira, S.; Zavelani-Rossi, M.; De Silvestri, S.; Virgili, T.; Lidzey, D. G.; Bradley, D. D. C. Ultrafast F?rster transfer dynamics in tetraphenylporphyrin doped poly(9, 9-dioctylfluorene). Chem. Phys. Lett. 2001, 335, 27–33.

40

Huijser, A.; Savenije, T. J.; Kroeze, J. E.; Siebbeles, L. D. A. Exciton diffusion and interfacial charge separation in meso-tetraphenylporphyrin/TiO2 bilayers: Effect of ethyl substituents. J. Phys. Chem. B 2005, 109, 20166–20173.

41

Ghezzi, D.; Antognazza, M. R.; Maccarone, R.; Bellani, S.; Lanzarini, E.; Martino, N.; Mete, M.; Pertile, G.; Bisti, S.; Lanzani G. et al. A polymer optoelectronic interface restores light sensitivity in blind rat retinas. Nat. Photonics 2013, 7, 400–406.

42

Weber, W. M.; Duesberg, G. S.; Graham, A. P.; Liebau, M.; Unger, E.; Cheze, C.; Geelhaar, L.; Lugli, P.; Riechert, H.; Kreupl, F. Silicon nanowires: Catalytic growth and electrical characterization. Phys. Stat. Sol. B 2006, 243, 3340–3345.

Nano Research
Pages 1229-1240
Cite this article:
Baek E, Pregl S, Shaygan M, et al. Optoelectronic switching of nanowire-based hybrid organic/oxide/semiconductor field-effect transistors. Nano Research, 2015, 8(4): 1229-1240. https://doi.org/10.1007/s12274-014-0608-7

680

Views

33

Crossref

N/A

Web of Science

33

Scopus

0

CSCD

Altmetrics

Received: 30 June 2014
Revised: 24 September 2014
Accepted: 10 October 2014
Published: 22 November 2014
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Return