Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Iron oxide is a promising anode material for lithium ion batteries, but it usually exhibits poor electrochemical property because of its poor conductivity and large volume variation during the lithium uptake and release processes. In this work, a double protection strategy for improving electrochemical performance of Fe3O4 nanoparticles through the use of decoration with multi-walled carbon nanotubes and reduced graphene oxides networks has been developed. The resulting MWCNTs-Fe3O4-rGO nanocomposites exhibited excellent cycling performance and rate capability in comparison with MWCNTs-Fe3O4, MWCNTs-Fe3O4 physically mixed with rGO, and Fe3O4-rGO. A reversible capacity of ~680 mA·h·g-1 can be maintained after 100 cycles under a current density of 200 mA·g-1.
Wang, Z.; Zhou, L.; Lou, X. W. Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 2012, 24, 1903-1911.
Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367.
Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative- electrode materials for lithium-ion batteries. Nature 2000, 407, 496-499.
Xu, S.; Hessel, C. M.; Ren, H.; Yu, R.; Jin, Q.; Yang, M.; Zhao, H.; Wang, D. α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy Environ. Sci. 2014, 7, 632-637.
Wang, J.; Yang, N.; Tang, H.; Dong, Z.; Jin, Q.; Yang, M.; Kisailus, D.; Zhao, H.; Tang, Z.; Wang, D. Accurate control of multishelled Co3O4 hollow microspheres as high- performance anode materials in lithium-ion batteries. Angew. Chem. Int. Ed. 2013, 52, 6417-6420.
Zhang, L.; Wu, H. B.; Lou, X. W. Iron-oxide-based advanced anode materials for lithium-ion batteries. Adv. Energy Mater. 2014, 4, 1300958.
Chen, Y.; Song, B.; Tang, X.; Lu, L.; Xue, J. Ultrasmall Fe3O4 nanoparticle/MoS2 nanosheet composites with superior performances for lithium ion batteries. Small 2014, 10, 1536-1543.
Chen, D.; Ji, G.; Ma, Y.; Lee, J. Y.; Lu, J. Graphene- encapsulated hollow Fe3O4 nanoparticle aggregates as a high-performance anode material for lithium ion batteries. ACS Appl. Mater. Interfaces 2011, 3, 3078-3083.
Wang, J. -Z.; Zhong, C.; Wexler, D.; Idris, N. H.; Wang, Z. -X.; Chen, L. -Q.; Liu, H. -K. Graphene-encapsulated Fe3O4 nanoparticles with 3D laminated structure as superior anode in lithium ion batteries. Chem. Eur. J. 2011, 17, 661-667.
Zhou, G.; Wang, D. -W.; Li, F.; Zhang, L.; Li, N.; Wu, Z. -S.; Wen, L.; Lu, G. Q.; Cheng, H. -M. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater. 2010, 22, 5306-5313.
Ji, L.; Tan, Z.; Kuykendall, T. R.; Aloni, S.; Xun, S.; Lin, E.; Battaglia, V.; Zhang, Y. Fe3O4 nanoparticle-integrated graphene sheets for high-performance half and full lithium ion cells. Phys. Chem. Chem. Phys. 2011, 13, 7170-7177.
Zhang, M.; Lei, D.; Yin, X.; Chen, L.; Li, Q.; Wang, Y.; Wang, T. Magnetite/graphene composites: Microwave irradiation synthesis and enhanced cycling and rate performances for lithium ion batteries. J. Mater. Chem. 2010, 20, 5538-5543.
Yang, S.; Feng, X.; Ivanovici, S.; Müllen, K. Fabrication of graphene-encapsulated oxide nanoparticles: Towards high- performance anode materials for lithium storage. Angew. Chem. Int. Ed. 2010, 49, 8408-8411.
Wei, W.; Yang, S.; Zhou, H.; Lieberwirth, I.; Feng, X.; Müllen, K. 3D graphene foams cross-linked with pre- encapsulated Fe3O4 nanospheres for enhanced lithium storage. Adv. Mater. 2013, 25, 2909-2914.
Su, Y.; Li, S.; Wu, D.; Zhang, F.; Liang, H.; Gao, P.; Cheng, C.; Feng, X. Two-dimensional carbon-coated graphene/metal oxide hybrids for enhanced lithium storage. ACS Nano 2012, 6, 8349-8356.
Su, J.; Cao, M.; Ren, L.; Hu, C. Fe3O4-graphene nanocomposites with improved lithium storage and magnetism properties. J. Phys. Chem. C 2011, 115, 14469-14477.
Luo, J.; Liu, J.; Zeng, Z.; Ng, C. F.; Ma, L.; Zhang, H.; Lin, J.; Shen, Z.; Fan, H. J. Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability. Nano Lett. 2013, 13, 6136-6143.
Li, B.; Cao, H.; Shao, J.; Qu, M.; Warner, J. H. Superparamagnetic Fe3O4 nanocrystals@graphene composites for energy storage devices. J. Mater. Chem. 2011, 21, 5069-5075.
Bhuvaneswari, S.; Pratheeksha, P. M.; Anandan, S.; Rangappa, D.; Gopalan, R.; Rao, T. N. Efficient reduced graphene oxide grafted porous Fe3O4 composite as a high performance anode material for Li-ion batteries. Phys. Chem. Chem. Phys. 2014, 16, 5284-5294.
Sathish, M.; Tomai, T.; Honma, I. Graphene anchored with Fe3O4 nanoparticles as anode for enhanced Li-ion storage. J. Power Sources 2012, 217, 85-91.
Kang, E.; Jung, Y. S.; Cavanagh, A. S.; Kim, G. -H.; George, S. M.; Dillon, A. C.; Kim, J. K.; Lee, J. Fe3O4 nanoparticles confined in mesocellular carbon foam for high performance anode materials for lithium-ion batteries. Adv. Funct. Mater. 2011, 21, 2430-2438.
Wang, L.; Yu, Y.; Chen, P. C.; Zhang, D. W.; Chen, C. H. Electrospinning synthesis of C/Fe3O4 composite nanofibers and their application for high performance lithium-ion batteries. J. Power Sources 2008, 183, 717-723.
Cui, Z. -M.; Jiang, L. -Y.; Song, W. -G.; Guo, Y. -G. High-yield gas-liquid interfacial synthesis of highly dispersed Fe3O4 nanocrystals and their application in lithium-ion batteries. Chem. Mater. 2009, 21, 1162-1166.
Wang, Y.; Zhang, L.; Gao, X.; Mao, L.; Hu, Y.; Lou, X. W. One-pot magnetic field induced formation of Fe3O4/C composite microrods with enhanced lithium storage capability. Small 2014, 10, 2815-2819.
Dai, H. Carbon nanotubes: Synthesis, integration, and properties. Acc. Chem. Res. 2002, 35, 1035-1044.
Baughman, R. H. Carbon nanotubes—the route toward applications. Science 2002, 297, 787-792.
Wang, S.; Yi, L.; Halpert, J. E.; Lai, X.; Liu, Y.; Cao, H.; Yu, R.; Wang, D.; Li, Y. A novel and highly efficient photocatalyst based on P25-graphdiyne nanocomposite. Small 2012, 8, 265-271.
Wassei, J. K.; Kaner, R. B. Oh, the places you'll go with graphene. Acc. Chem. Res. 2013, 46, 2244-2253.
Huang, X.; Qi, X; Boey, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev. 2012, 41, 666-686.
Tang, H.; Hessel, C. M.; Wang, J.; Yang, N.; Yu, R.; Zhao, H.; Wang, D. Two-dimensional carbon leading to new photoconversion processes. Chem. Soc. Rev. 2014, 43, 4281-4299.
Tang, H.; Yin, H.; Wang, J.; Yang, N.; Wang, D.; Tang, Z. Molecular architecture of cobalt porphyrin multilayers on reduced graphene oxide sheets for high-performance oxygen reduction reaction. Angew. Chem. Int. Ed. 2013, 52, 5585-5589.
Yang, N.; Liu, Y.; Wen, H.; Tang, Z.; Zhao, H.; Li, Y.; Wang, D. Photocatalytic properties of graphdiyne and graphene modified TiO2: From theory to experiment. ACS Nano 2013, 7, 1504-1512.
Cheng, J.; Wang, B.; Park, C. -M.; Wu, Y.; Huang, H; Nie, F. CNT@Fe3O4@C coaxial nanocables: One-pot, additive- free synthesis and remarkable lithium storage behavior. Chem. Eur. J. 2013, 19, 9866-9874.
Ban, C.; Wu, Z.; Gillaspie, D. T.; Chen, L.; Yan, Y.; Blackburn, J. L.; Dillon, A. C. Nanostructured Fe3O4/SWNT electrode: Binder-free and high-rate Li-ion anode. Adv. Mater. 2010, 22, E145-E149.
Jian, Z.; Liu, P.; Li, F.; He, P.; Guo, X.; Chen, M.; Zhou, H. Core-shell-structured CNT@RuO2 composite as a high- performance cathode catalyst for rechargeable Li-O2 batteries. Angew. Chem. Int. Ed. 2013, 53, 442-446.
Shi, Q.; Peng, F.; Liao, S.; Wang, H.; Yu, H.; Liu, Z.; Zhang, B.; Su, D. S. Sulfur and nitrogen co-doped carbon nanotubes for enhancing electrochemical oxygen reduction activity in acidic and alkaline media. J. Mater. Chem. A 2013, 1, 14853-14857.
Chen, C.; Zhang, J.; Zhang, B.; Yu, C.; Peng, F.; Su, D. Revealing the enhanced catalytic activity of nitrogen-doped carbon nanotubes for oxidative dehydrogenation of propane. Chem. Commun. 2013, 49, 8151-8153.
Cao, C. -Y.; Wei, F.; Qu, J.; Song, W. -G. Programmed synthesis of magnetic magnesium silicate nanotubes with high adsorption capacities for lead and cadmium ions. Chem. Eur. J. 2013, 19, 1558-1562.
Fujii, T.; de Groot, F. M. F.; Sawatzky, G. A.; Voogt, F. C.; Hibma, T.; Okada, K. In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy. Phys. Rev. B 1999, 59, 3195-3202.
Arif Sher Shah, M. S.; Zhang, K.; Park, A. R.; Kim, K. S.; Park, N. -G.; Park, J. H.; Yoo, P. J. Single-step solvothermal synthesis of mesoporous Ag-TiO2-reduced graphene oxide ternary composites with enhanced photocatalytic activity. Nanoscale 2013, 5, 5093-5101.
Yu, Y.; Sun, Y.; Cao, C.; Yang, S.; Liu, H.; Li, P.; Huang, P.; Song, W. Graphene-based composite supercapacitor electrodes with diethylene glycol as inter-layer spacer. J. Mater. Chem. A 2014, 2, 7706-7710.
Li, B.; Cao, H.; Shao, J.; Qu, M. Enhanced anode performances of the Fe3O4-carbon-rGO three dimensional composite in lithium ion batteries. Chem. Commun. 2011, 47, 10374-10376.
Tu, W.; Zhou, Y.; Zou, Z. Versatile graphene-promoting photocatalytic performance of semiconductors: Basic principles, synthesis, solar energy conversion, and environmental applications. Adv. Funct. Mater. 2013, 23, 4996-5008.