AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Three-dimensional porous V2O5 hierarchical octahedrons with adjustable pore architectures for long-life lithium batteries

Qinyou An§Pengfei Zhang§Fangyu Xiong§Qiulong WeiJinzhi ShengQinqin WangLiqiang Mai ( )
State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWUT-Harvard Joint Nano Key LaboratoryWuhan University of TechnologyWuhanHubei430070China

§ These authors contributed equally to this work. All authors discussed the results and commented on the manuscript. The authors declare no competing financial interest.

Show Author Information

Graphical Abstract

Abstract

Three-dimensional (3D) porous V2O5 octahedrons have been successfully fabricated via a solid-state conversion process of freshly prepared ammonium vanadium oxide (AVO) octahedrons. The formation of AVO octahedrons is a result of the selective adsorption of capping reagents and the favourable supersaturation of growth species. Subsequently, 3D porous V2O5 octahedrons were obtained by simple thermolysis of the AVO octahedrons via a calcination treatment. As cathode material for lithium batteries, the porous V2O5 octahedron cathode exhibits a capacity of 96 mA·g-1 at high rate up to 2 A·g-1 in the rang of 2.4–4 V and excellent cyclability with little capacity loss after 500 cycles, which can be ascribed to its high specific surface area and tunable pore architecture. Importantly, this facile solid-state thermal conversion strategy can be easily extended to controllably fabricate other porous metal oxide micro/nano materials with specific surface textures and morphologies.

Electronic Supplementary Material

Download File(s)
12274_2014_638_MOESM1_ESM.pdf (1.6 MB)

References

1

Kang, B.; Ceder, G. Battery materials for ultrafast charging and discharging. Nature 2009, 458, 190-193.

2

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652-657.

3

Zu, C. X.; Li, H. Thermodynamic analysis on energy densities of batteries. Energy Environ. Sci. 2011, 4, 2614-2624.

4

Winter, M.; Besenhard, J. O.; Spahr, M. E.; Novák, P. Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 1998, 10, 725-763.

5

Liu, G. Q.; Wen, L.; Liu, Y. M. Spinel LiNi0.5Mn1.5O4 and its derivatives as cathodes for high-voltage Li-ion batteries. J. Solid State Electrochem. 2010, 14, 2191-2202.

6

Zhang, C. Z.; Mahmood, N.; Yin, H.; Liu, F.; Hou, Y. L. Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Adv. Mater. 2013, 25, 4932-4937.

7

Yang, S. B.; Cui, G. L.; Pang, S. P.; Cao, Q.; Kolb, U.; Feng, X. L.; Maier, J.; Müllen, K. Fabrication of cobalt and cobalt oxide/graphene composites: Towards high-performance anode materials for lithium ion batteries. ChemSusChem 2010, 3, 236-239.

8

Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 2004, 104, 4271-4302.

9

Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587-603.

10

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367.

11

Wu, H.; Chan, G.; Choi, J. W.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L. B.; Cui, Y. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 2012, 7, 310-315.

12

Jiang, J.; Feng, Y.; Mahmood, N.; Liu, F.; Hou, Y. L. SnS2/ graphene composites: Excellent anode materials for lithium ion battery and photolysis catalysts. Sci. Adv. Mater. 2013, 5, 1667-1675.

13

Wang, Y. G.; Li, H. Q.; Xia, Y. Y. Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv. Mater. 2006, 18, 2619-2623.

14

Yao, Y.; McDowell, M. T.; Ryu, I.; Wu, H.; Liu, N.; Hu, L. B.; Nix, W. D.; Cui, Y. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 2011, 11, 2949-2954.

15

Li, L.; Fang, X. S.; Chew, H. G.; Zheng, F.; Liew, T. H.; Xu, X. J.; Zhang, Y. X.; Pan, S. S.; Li, G. H.; Zhang, L. Crystallinity-controlled germanium nanowire arrays: Potential field emitters. Adv. Funct. Mater. 2008, 18, 1080-1088.

16

Hassoun, J.; Derrien, G.; Panero, S.; Scrosati, B. A nanostructured Sn-C composite lithium battery electrode with unique stability and high electrochemical performance. Adv. Mater. 2008, 20, 3169-3175.

17

Sun, Y. M.; Hu, X. L.; Luo, W.; Xia, F. F.; Huang, Y. H. Reconstruction of conformal nanoscale MnO on graphene as a high-capacity and long-life anode material for lithium ion batteries. Adv. Funct. Mater. 2013, 23, 2436-2444.

18

Cao, Y. L.; Li, X. L.; Aksay, I. A.; Lemmon, J.; Nie, Z. M.; Yang, Z. G.; Liu, J. Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries. Phys. Chem. Chem. Phys. 2011, 13, 7660-7665.

19

Fergus, J. W. Recent developments in cathode materials for lithium ion batteries. J. Power Sources 2010, 195, 939-954.

20

Chen, J.; Xu, L. N.; Li, W. Y.; Gou, X. L. α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv. Mater. 2005, 17, 582-586.

21

Mahmood, N.; Zhang, C. Z.; Jiang, J.; Liu, F.; Hou, Y. L. Multifunctional Co3S4/graphene composites for lithium ion batteries and oxygen reduction reaction. Chem. Eur. J. 2013, 19, 5183-5190.

22

Wang, S. Q.; Li, S. R.; Sun, Y.; Feng, X. Y.; Chen, C. H. Three-dimensional porous V2O5 cathode with ultra high rate capability. Energy Environ. Sci. 2011, 4, 2854-2857.

23

Qu, Q. T.; Zhu, Y.; Gao, X.; Wu, Y. S. Core-shell structure of polypyrrole grown on V2O5 nanoribbon as high performance anode material for supercapacitors. Adv. Energy Mater. 2012, 2, 950-955.

24

Xie, J.; Yang, X. G.; Zhou, S.; Wang, D. W. Comparing one- and two-dimensional heteronanostructures as silicon-based lithium ion battery anode materials. ACS nano 2011, 5, 9225-9231.

25

Wang, Y.; Cao, G. Z. Developments in nanostructured cathode materials for high-performance lithium-ion batteries. Adv. Mater. 2008, 20, 2251-2269.

26

Zhai, T. Y.; Ye, M. F.; Li, L.; Fang, X. S.; Liao, M. Y.; Li, Y. F.; Koide, Y.; Bando, Y.; Golberg, D. Single-crystalline Sb2Se3 nanowires for high-performance field emitters and photodetectors. Adv. Mater. 2010, 22, 4530-4533.

27

Ban, C. M.; Chernova, N. A.; Whittingham, M. S. Electrospun nano-vanadium pentoxide cathode. Electrochem. Commun. 2009, 11, 522-525.

28

Muster, J.; Kim, G. T.; Krstić, V.; Park, J. G.; Park, Y. W.; Roth, S.; Burghard, M. Electrical transport through individual vanadium pentoxide nanowires. Adv. Mater. 2000, 12, 420- 424.

29

Watanabe, T.; Ikeda, Y.; Ono, T.; Hibino, M.; Hosoda, M.; Sakai, K.; Kudo, T. Characterization of vanadium oxide sol as a starting material for high rate intercalation cathodes. Solid State Ionics 2002, 151, 313-320.

30

Liu, Y. Y.; Clark, M.; Zhang, Q. F.; Yu, D. M.; Liu, D.; Liu, J. W.; Cao, G. Z. V2O5 nano-electrodes with high power and energy densities for thin film Li-ion batteries. Adv. Energy Mater. 2011, 1, 194-202.

31

Raju, V.; Rains, J.; Gates, C.; Luo, W.; Wang, X. F.; Stickle, W. F.; Stucky, G. D.; Ji, X. L. Superior cathode of sodium-ion batteries: Orthorhombic V2O5 nanoparticles generated in nanoporous carbon by ambient hydrolysis deposition. Nano Lett. 2014, 14, 4119-4124.

32

Varadaraajan, V.; Satishkumar, B. C.; Nanda, J.; Mohanty, P. Direct synthesis of nanostructured V2O5 films using solution plasma spray approach for lithium battery applications. J. Power Sources 2011, 196, 10704-10711.

33

Ng, S. H.; Patey, T. J.; Büchel, R.; Krumeich, F.; Wang, J. Z.; Liu, H. K.; Pratsinis, S. E.; Novák, P. Flame spray-pyrolyzed vanadium oxide nanoparticles for lithium battery cathodes. Phys. Chem. Chem. Phys. 2009, 11, 3748-3755.

34

Mai, L. Q.; Dong, F.; Xu, X.; Luo, Y. Z.; An, Q. Y.; Zhao, Y. L.; Pan, J.; Yang, J. N. Cucumber-like V2O5/poly(3, 4- ethylenedioxythiophene) & MnO2 nanowires with enhanced electrochemical cyclability. Nano Lett. 2013, 13, 740-745.

35

Liu, H. M.; Yang, W. S. Ultralong single crystalline V2O5 nanowire/graphene composite fabricated by a facile green approach and its lithium storage behavior. Energy Environ. Sci. 2011, 4, 4000-4008.

36

Wang, Y.; Takahashi, K.; Shang, H. M.; Cao, G. Z. Synthesis and electrochemical properties of vanadium pentoxide nanotube arrays. J. Phys. Chem. B 2005, 109, 3085-3088.

37

Wang, H. Y.; Huang, K. L.; Huang, C. H.; Liu, S. Q.; Ren, Y.; Huang, X. B. (NH4)0.5V2O5 nanobelt with good cycling stability as cathode material for Li-ion battery. J. Power Sources 2011, 196, 5645-5650.

38

Rui, X. H.; Lu, Z. Y.; Yu, H.; Yang, D.; Hng, H. H.; Lim, T. M.; Yan, Q. Y. Ultrathin V2O5 nanosheet cathodes: Realizing ultrafast reversible lithium storage. Nanoscale 2013, 5, 556-560.

39

Mai, L. Q.; Xu, L.; Han, C. H.; Xu, X.; Luo, Y. Z.; Zhao, S. Y.; Zhao, Y. L. Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries. Nano Lett. 2010, 10, 4750-4755.

40

Yu, D. M.; Chen, C. G.; Xie, S. H.; Liu, Y. Y.; Park, K.; Zhou, X. Y.; Zhang, Q. F.; Li, J. Y.; Cao, G. Z. Mesoporous vanadium pentoxide nanofibers with significantly enhanced Li-ion storage properties by electrospinning. Energy Environ. Sci. 2011, 4, 858-861.

41

Yan, J.; Sumboja, A.; Khoo, E.; Lee, P. S. V2O5 loaded on SnO2 nanowires for high-rate Li ion batteries. Adv. Mater. 2011, 23, 746-750.

42

Cao, A. M.; Hu, J. S.; Liang, H. P.; Wan, L. J. Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries. Angew. Chem. Int. Edit. 2005, 44, 4391-4395.

43

Sasidharan, M.; Gunawardhana, N.; Yoshio, M.; Nakashima, K. V2O5 hollow nanospheres: A lithium intercalation host with good rate capability and capacity retention. J. Electrochem. Soc. 2012, 159, A618-A621.

44

Wang, S. Q.; Lu, Z. D.; Wang, D.; Li, C. G.; Chen, C. H.; Yin, Y. D. Porous monodisperse V2O5 microspheres as cathode materials for lithium-ion batteries. J. Mater. Chem. 2011, 21, 6365-6369.

45

Feng, C. Q.; Wang, S. Y.; Zeng, R.; Guo, Z. P.; Konstantinov, K.; Liu, H. K. Synthesis of spherical porous vanadium pentoxide and its electrochemical properties. J. Power Sources 2008, 184, 485-488.

46

Liu, Y. Y.; Li, J. G.; Zhang, Q.; Zhou, N.; Uchaker, E. F.; Cao, G. Z. Porous nanostructured V2O5 film electrode with excellent Li-ion intercalation properties. Electrochem. Commun. 2011, 13, 1276-1279.

47

An, Q. Y.; Wei, Q. L.; Mai, L. Q.; Fei, J. Y.; Xu, X.; Zhao, Y. L.; Yan, M. Y.; Zhang, P. F.; Huang, S. Z. Supercritically exfoliated ultrathin vanadium pentoxide nanosheets with high rate capability for lithium batteries. Phy. Chem. Chem. Phys. 2013, 15, 16828-16833.

48

Liu, N.; Lu, Z. D.; Zhao, J.; McDowell, M. T.; Lee, H. W.; Zhao, W. T.; Cui, Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 2014, 9, 187-192.

49

Xiang, H. F.; Wang, H.; Chen, C. H.; Ge, X. W.; Guo, S.; Sun, J. H.; Hu, W. Q. Thermal stability of LiPF6-based electrolyte and effect of contact with various delithiated cathodes of Li-ion batteries. J. Power Sources 2009, 191, 575-581.

50

Sun, Y. K.; Oh, S. M.; Park, H. K.; Scrosati, B. Micrometer- sized, nanoporous, high-volumetric-capacity LiMn0.85Fe0.15PO4 cathode material for rechargeable lithium-ion batteries. Adv. Mater. 2011, 23, 5050-5054.

51

Sun, C. W.; Rajasekhara, S.; Goodenough, J. B.; Zhou, F. Monodisperse porous LiFePO4 microspheres for a high power Li-ion battery cathode. J. Am. Chem. Soc. 2011, 133, 2132- 2135.

52

Ren, M. M.; Zhou, Z.; Gao, X. P.; Peng, W. X.; Wei, J. P. Core-shell Li3V2(PO4)3@C composites as cathode materials for lithium-ion batteries. J. Phys. Chem. C 2008, 112, 5689- 5693.

53

Liu, J.; Zhou, Y. C.; Wang, J. B.; Pan, Y.; Xue, D. F. Template-free solvothermal synthesis of yolk-shell V2O5 microspheres as cathode materials for Li-ion batteries. Chem. Commun. 2011, 47, 10380-10382.

54

Xie, H. M.; Wang, R. S.; Ying, J. R.; Zhang, L. Y.; Jalbout, A. F.; Yu, H. Y.; Yang, G. L.; Pan, X. M.; Su, Z. M. Optimized LiFePO4-polyacene cathode material for lithium-ion batteries. Adv. Mater. 2006, 18, 2609-2613.

55

Pan, A. Q.; Wu, H. B.; Yu, L.; Zhu, T.; Lou, X. W. Synthesis of hierarchical three-dimensional vanadium oxide microstructures as high-capacity cathode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 2012, 4, 3874-3879.

56

Kim, H.; Han, B.; Choo, J.; Cho, J. Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew. Chem. Int. Ed. 2008, 47, 10151-10154.

57

Zhang, C. F.; Chen, Z. X.; Guo, Z. P.; Lou, X. W. D. Additive- free synthesis of 3D porous V2O5 hierarchical microspheres with enhanced lithium storage properties. Energy Environ. Sci. 2013, 6, 974-978.

58

Kang, L. T.; Fu, H. B.; Cao, X. Q.; Shi, Q.; Yao, J. N. Controlled morphogenesis of organic polyhedral nanocrystals from cubes, cubooctahedrons, to octahedrons by manipulating the growth kinetics. J. Am. Chem. Soc. 2011, 133, 1895-1901.

59

Zhang, X. F.; Wang, K. X.; Wei, X.; Chen, J. S. Carbon- coated V2O5 nanocrystals as high performance cathode material for lithium ion batteries. Chem. Mater. 2011, 23, 5290-5292.

60

Yu, H. D.; Wang, D. S.; Han, M. Y. Top-down solid-phase fabrication of nanoporous cadmium oxide architectures. J. Am. Chem. Soc. 2007, 129, 2333-2337.

61

An, Q. Y.; Zhang, P. F.; Wei, Q. L.; He, L.; Xiong, F. Y.; Sheng, J. Z.; Wang, Q. Q.; Mai, L. Q. Top-down fabrication of three-dimensional porous V2O5 hierarchical microplates with tunable porosity for improved lithium battery performance. J. Mater. Chem. A 2014, 2, 3297-3302.

62

Choi, B. G.; Chang, S. J.; Lee, Y. B.; Bae, J. S.; Kim, H. J.; Huh, Y. S. 3D heterostructured architectures of Co3O4 nanoparticles deposited on porous graphene surfaces for high performance of lithium ion batteries. Nanoscale 2012, 4, 5924-5930.

63

Mahmood, N.; Zhang, C. Z.; Hou, Y. L. Nickel sulfi de/nitrogen-doped graphene composites: Phase-controlled synthesis and high performance anode materials for lithium ion batteries. Small 2013, 9, 1321-1328.

64

Meng, F. L.; Fang, Z. G.; Li, Z. X.; Xu, W. W.; Wang, M. J.; Liu, Y. P.; Zhang, J.; Wang, W. R.; Zhao, D. Y.; Guo, X. H. Porous Co3O4 materials prepared by solid-state thermolysis of a novel Co-MOF crystal and their superior energy storage performances for supercapacitors. J. Mater. Chem. A 2013, 1, 7235-7241.

65

Mahmood, N.; Zhang, C. Z.; Liu, F.; Zhu, J. H.; Hou, Y. L. Hybrid of Co3Sn2@Co nanoparticles and nitrogen-doped graphene as a lithium ion battery anode. ACS nano 2013, 7, 10307-10318.

Nano Research
Pages 481-490
Cite this article:
An Q, Zhang P, Xiong F, et al. Three-dimensional porous V2O5 hierarchical octahedrons with adjustable pore architectures for long-life lithium batteries. Nano Research, 2015, 8(2): 481-490. https://doi.org/10.1007/s12274-014-0638-1

552

Views

75

Crossref

N/A

Web of Science

80

Scopus

10

CSCD

Altmetrics

Received: 15 September 2014
Revised: 27 October 2014
Accepted: 12 November 2014
Published: 03 January 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Return