AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Mass production of Co3O4@CeO2 core@shell nanowires for catalytic CO oxidation

Jiangman Zhen1,2,§Xiao Wang1,§Dapeng Liu1( )Zhuo Wang1,2Junqi Li1,2Fan Wang1,2Yinghui Wang1Hongjie Zhang1( )
State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022Jilin, China
University of the Chinese Academy of SciencesBeijing100039China

§ The two authors contribute equally to this work.

Show Author Information

Graphical Abstract

Abstract

In this study, Co3O4@CeO2 core@shell nanowires were successfully prepared via thermal decomposition of Co(CO3)0.5(OH)·0.11H2O@CeO2 core@shell nanowire precursors. As a CO oxidation catalyst, Co3O4@CeO2 shows remarkably enhanced catalytic performance compared to Co3O4 nanowires and CeO2 nanoparticles (NPs), indicating obvious synergistic effects between the two components. It also suggests that the CeO2 shell coating can effectively prevent Co3O4 nanowires from agglomerating, hence effecting a substantial improvement in the structural stability of the Co3O4 catalyst. Furthermore, the fabrication of the well-dispersed core@shell structure results in a maximized interface area between Co3O4 and CeO2, as well as a reduced Co3O4 size, which may be responsible for the enhanced catalytic activity of Co3O4@CeO2. Further examination revealed that CO oxidation may occur at the interface of Co3O4 and CeO2. The influence of calcination temperatures and the component ratio between Co3O4 and CeO2 were then investigated in detail to determine the catalytic performance of Co3O4@CeO2 core@shell nanowires, the best of which was obtained by calcination at 250 ℃ for 3 h with a Ce molar concentration of about 38.5%. This sample achieved 100% CO conversion at a reduced temperature of 160 ℃. More importantly, more than 2.5 g of the Co3O4@CeO2 core@shell nanowires were produced in one pot by this simple process, which may be beneficial for practical applications as automobile-exhaust gas-treatment catalysts.

Electronic Supplementary Material

Download File(s)
12274_2015_704_MOESM1_ESM.pdf (2.8 MB)

References

1

Hu, L. H.; Sun, K. Q.; Peng, Q.; Xu, B. Q.; Li, Y. D. Surface active sites on Co3O4 nanobelt and nanocube model catalysts for CO oxidation. Nano Res. 2010, 3, 363-368.

2

Xie, X. W.; Li, Y.; Liu, Z. Q.; Haruta, M.; Shen, W. J. Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 2009, 458, 746-749.

3

Song, W. Q.; Poyraz, A. S.; Meng, Y. T.; Ren, Z.; Chen, S. Y.; Suib, S. L. Mesoporous Co3O4 with controlled porosity: Inverse micelle synthesis and high-performance catalytic CO oxidation at -60 ℃. Chem. Mater. 2014, 26, 4629-4639.

4

Pandey, A. D.; Jia, C. J.; Schmidt, W.; Leoni, M.; Schwickardi, M.; Schüth, F.; Weidenthaler, C. Size-controlled synthesis and microstructure investigation of Co3O4 nanoparticles for low-temperature CO oxidation. J. Phys. Chem. C 2012, 116, 19405-19412.

5

Jia, C. J.; Schwickardi, M.; Weidenthaler, C.; Schmidt, W.; Korhonen, S.; Weckhuysen, B. M.; Schüth, F. Co3O4-SiO2 nanocomposite: A very active catalyst for CO oxidation with unusual catalytic behavior. J. Am. Chem. Soc. 2011, 133, 11279-11288.

6

Lu, Z. H.; Jiang, H. L.; Yadav, M.; Aranishi, K.; Xu, Q. Synergistic catalysis of Au-Co@SiO2 nanospheres in hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. J. Mater. Chem. 2012, 22, 5065-5071.

7

Arnal, P. M.; Comotti, M.; Schüth, F. High-temperature-stable catalysts by hollow sphere encapsulation. Angew. Chem. Int. Ed. 2006, 45, 8224-8227.

8

Ge, J. P.; Zhang, Q.; Zhang, T. R.; Yin, Y. D. Core-satellite nanocomposite catalysts protected by a porous silica shell: Controllable reactivity, high stability, and magnetic recyclability. Angew. Chem. Int. Ed. 2008, 47, 8924-8928.

9

Zhang, T. T.; Zhao, H. Y.; He, S. N.; Liu, K.; Liu, H. Y.; Yin, Y. D.; Gao, C. B. Unconventional route to encapsulated ultrasmall gold nanoparticles for high-temperature catalysis. Acs. Nano 2014, 8, 7297-7304.

10

Yu, K.; Wu, Z. C.; Zhao, Q. R.; Li, B. X.; Xie, Y. High-temperature-stable Au@SnO2 core/shell supported catalyst for CO oxidation. J. Phys. Chem. C 2008, 112, 2244-2247.

11

Zhou, H. P.; Wu, H. S.; Shen, J.; Yin, A. X.; Sun, L. D.; Yan, C. H. Thermally stable Pt/CeO2 hetero-nanocomposites with high catalytic activity. J. Am. Chem. Soc. 2010, 132, 4998-4999.

12

Zhang, J.; Li, L. P.; Huang, X. S.; Li, G. S. Fabrication of Ag-CeO2 core-shell nanospheres with enhanced catalytic performance due to strengthening of the interfacial interactions. J. Mater. Chem. 2012, 22, 10480-10487.

13

Lee, I.; Zhang, Q.; Ge, J. P.; Yin, Y. D.; Zaera, F. Encapsulation of supported Pt nanoparticles with mesoporous silica for increased catalyst stability. Nano Res. 2011, 4, 115-123.

14

Chen, J. C.; Zhang, R. Y.; Han, L.; Tu, B.; Zhao, D. Y. One-pot synthesis of thermally stable gold@mesoporous silica core-shell nanospheres with catalytic activity. Nano Res. 2013, 6, 871-879.

15

Zhang, N.; Xu, Y. J. Aggregation- and leaching-resistant, reusable, and multifunctional Pd@CeO2 as a robust nanocatalyst achieved by a hollow core-shell strategy. Chem. Mater. 2013, 25, 1979-1988.

16

Lin, F.; Hoang, D. T.; Tsung, C. K.; Huang, W. Y.; Lo, S. H. Y.; Wood, J. B.; Wang, H.; Tang, J. Y.; Yang, P. D. Catalytic properties of Pt cluster-decorated CeO2 nanostructures. Nano Res. 2011, 4, 61-71.

17

Zhang, Y.; Hou, F.; Tan, Y. W. CeO2 nanoplates with a hexagonal structure and their catalytic applications in highly selective hydrogenation of substituted nitroaromatics. Chem. Commun. 2012, 48, 2391-2393.

18

Lee, Y. J.; He, G. H.; Akey, A. J.; Si, R.; Flytzani-Stephanopoulos, M.; Herman, I. P. Raman analysis of mode softening in nanoparticle CeO2-δ and Au-CeO2-δ during CO oxidation. J. Am. Chem. Soc. 2011, 133, 12952-12955.

19

Xu, L. S; Ma, Y. S.; Zhang, Y. L.; Jiang, Z. Q.; Huang, W. X. Direct evidence for the interfacial oxidation of CO with hydroxyls catalyzed by Pt/oxide nanocatalysts. J. Am. Chem. Soc. 2009, 131, 16366-16367.

20

Tian, J.; Sang, Y. H.; Zhao, Z. H.; Zhou, W. J.; Wang, D. Z.; Kang, X. L.; Liu, H.; Wang, J. Y.; Chen, S. W.; Cai, H. Q.; et al. Enhanced photocatalytic performances of CeO2/TiO2 nanobelt heterostructures. Small 2013, 9, 3864-3872.

21

Mak, A. C.; Yu, C. L.; Yu, J. C.; Zhang, Z. D.; Ho, C. A lamellar ceria structure with encapsulated platinum nanoparticles. Nano Res. 2008, 1, 474-482.

22

Wang, X.; Liu, D. P.; Song, S. Y.; Zhang, H. J. Pt@CeO2 multicore@shell self-assembled nanospheres: Clean synthesis, structure optimization, and catalytic applications. J. Am. Chem. Soc. 2013, 135, 15864-15872.

23

Kayama, T.; Yamazaki, K.; Shinjoh, H. Nanostructured ceria-silver synthesized in a one-pot redox reaction catalyzes carbon oxidation. J. Am. Chem. Soc. 2010, 132, 13154-13155.

24

Guo, H.; He, Y. B.; Wang, Y. P.; Liu, L. X.; Yang, X. J.; Wang, S. X.; Huang, Z. J.; Wei, Q. Y. Morphology-controlled synthesis of cage-bell Pd@CeO2 structured nanoparticle aggregates as catalysts for the low-temperature oxidation of CO. J. Mater. Chem. A 2013, 1, 7494-7499.

25

Li, B. X.; Gu, T.; Ming, T.; Wang, J. X.; Wang, P.; Wang, J. F.; Yu, J. C. (Gold core)@(ceria shell) nanostructures for plasmon-enhanced catalytic reactions under visible light. ACS Nano 2014, 8, 8152-8162.

26

Wu, B. H.; Zhang, H.; Chen, C.; Lin, S. C.; Zheng, N. F. Interfacial activation of catalytically inert Au (6.7 nm)-Fe3O4 dumbbell nanoparticles for CO oxidation. Nano Res. 2009, 2, 975-983.

27

Wang, B.; Zhu, T.; Wu, H. B.; Xu, R.; Chen, J. S.; Lou, X. W. Porous Co3O4 nanowires derived from long Co(CO3)0.5(OH)· 0.11H2O nanowires with improved supercapacitive properties. Nanoscale 2012, 4, 2145-2149.

28

Zhen, J. M.; Wang, X.; Liu, D. P.; Song, S. Y.; Wang, Z.; Wang, Y. H.; Li, J. Q.; Wang, F.; Zhang, H. J. Co3O4@CeO2 core@shell cubes: Designed synthesis and optimization of catalytic properties. Chem. Eur. J. 2014, 20, 4469-4473.

29

Luo, J. Y.; Meng, M.; Zha, Y. Q.; Guo, L. H. Identification of the active sites for CO and C3H8 total oxidation over nanostructured CuO-CeO2 and Co3O4-CeO2 catalysts. J. Phys. Chem. C 2008, 112, 8694-8701.

30

Hornés, A.; Hungría, A. B.; Bera, P.; Cámara, A. L.; Fernández-García, M.; Martínez-Arias, A.; Barrio, L.; Estrella, M.; Zhou, G.; Fonseca, J. J.; et al. Inverse CeO2/CuO catalyst as an alternative to classical direct configurations for preferential oxidation of CO in hydrogen-rich stream. J. Am. Chem. Soc. 2010, 132, 34-35.

31

Wu, H.; Xu, M.; Wang, Y. C.; Zheng, G. F. Branched Co3O4/Fe2O3 nanowires as high capacity lithium-ion battery anodes. Nano Res. 2013, 6, 167-173.

32

Li, W. Y.; Xu, K. B.; An, L.; Jiang, F. R.; Zhou, X. Y.; Yang, J. M.; Chen, Z. G.; Zou, R. J.; Hu, J. Q. Effect of temperature on the performance of ultrafine MnO2 nanobelt supercapacitors. J. Mater. Chem. A 2014, 2, 1443-1447.

33

Wang, F.; Wang, X.; Liu, D. P.; Zhen, J. M.; Li, J. Q.; Wang, Y. H.; Zhang, H. J. High-performance ZnCo2O4@CeO2 core@shell microspheres for catalytic CO oxidation. ACS Appl. Mater. Interfaces 2014, 6, 22216-22223.

34

Tüysüz, H.; Hwang, Y. J.; Khan, S. B.; Asiri, A. M.; Yang, P. D. Mesoporous Co3O4 as an electrocatalyst for water oxidation. Nano Res. 2013, 6, 47-54.

35

Sun, Y.; Lv, P.; Yang, J. Y.; He, L.; Nie, J. C.; Liu, X. W.; Li, Y. D. Ultrathin Co3O4 nanowires with high catalytic oxidation of CO. Chem. Commun. 2011, 47, 11279-11281.

36

Li, J.; Zhang, Z. Y.; Tian, Z. M.; Zhou, X. M.; Zheng, Z. P.; Ma, Y. Y.; Qu, Y. Q. Low pressure induced porous nanorods of ceria with high reducibility and large oxygen storage capacity: synthesis and catalytic applications. J. Mater. Chem. A 2014, 2, 16459-16466.

37

Bao, H. Z.; Zhang, Z. H.; Hua, Q.; Huang, W. X. Compositions, structures, and catalytic activities of CeO2@Cu2O nanocomposites prepared by the template-assisted method. Langmuir 2014, 30, 6427-6436.

38

Xie, Q. S.; Zhao, Y.; Guo, H. Z.; Lu, A. L.; Zhang, X. X.; Wang, L. S.; Chen, M. S.; Peng, D. L. Facile preparation of well-dispersed CeO2-ZnO composite hollow microspheres with enhanced catalytic activity for CO oxidation. ACS Appl. Mater. Interfaces 2014, 6, 421-428.

39

Chen, G. Z.; Rosei, F.; Ma, D. L. Interfacial reaction-directed synthesis of Ce-Mn binary oxide nanotubes and their applications in CO oxidation and water treatment. Adv. Funct. Mater. 2012, 22, 3914-3920.

40

Guan, Y. J.; Hensen, E. J. M.; Liu, Y.; Zhang, H. D.; Feng, Z. C.; Li, C. Template-free synthesis of sphere, rod and prism morphologies of CeO2 oxidation catalysts. Catal. Lett. 2010, 137, 28-34.

Nano Research
Pages 1944-1955
Cite this article:
Zhen J, Wang X, Liu D, et al. Mass production of Co3O4@CeO2 core@shell nanowires for catalytic CO oxidation. Nano Research, 2015, 8(6): 1944-1955. https://doi.org/10.1007/s12274-015-0704-3

666

Views

47

Crossref

N/A

Web of Science

46

Scopus

4

CSCD

Altmetrics

Received: 25 September 2014
Revised: 03 December 2014
Accepted: 23 December 2014
Published: 24 April 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return