The cycloaddition reaction of CO2 with epoxide not only effectively reduces the concentration of CO2 in the atmosphere, but also has excellent industrial application value and up to 100% atom utilization, but there are difficulties in separation and recovery of traditional homogeneous catalysts, harsh reaction conditions of traditional heterogeneous catalysts, and activation of CO2 molecules. In this paper, an easily synthesized heterogeneous catalyst CeNCl/C was used to catalyze the cycloaddition reaction of CO2 with styrene oxide, with a high yield of 92.7%, a high selectivity of 96.7%, a TON value of 349, and a good stability demonstrated in six cycle tests (equivalent to 216 hours of testing). Through comprehensive studies, it was shown that CeNCl/C contains Lewis acid-base centers as active centers, which can effectively reduce the energy barrier required for ring opening of the reaction substrate, enhance the adsorption and activation of CO2, and promote the formation of intermediates, which led to the acquisition of excellent catalytic activity.
- Article type
- Year
- Co-author
“Reactive oxygen species (ROS) engineering” is one of the most promising anti-tumor treatments developed in recent years. Massive explosion of ROS will cause oxidative stress, thereby inducing tumor cell death. However, ROS accumulation in tumor cells is eliminated by endogenous cellular self-regulation strategies. In this work, a kind of endogenous/exogenous dual stimulation nanoagent noted as UMZC is developed. Fenton reaction occurs between NH2-MIL-88B(Fe) contained in UMZC and the overexpression of endogenous H2O2 to generate ROS, amplified by endogenous H2S of colon tumor cells. In addition, NH2-MIL-88B(Fe) also functions to deplete glutathione (GSH) for stopping it from consuming ROS. Upconversion nanoparticles at the core of UMZC convert near-infrared into visible light, which excites zinc phthalocyanine to initiate the photochemical reaction that generates more ROS, thus alleviating the lack of tissue penetration depth for visible light. Autophagy agonist chitosan oligosaccharides induce enhancement of cellular autophagy for disrupting cellular metabolic stress and the resistance to oxidative stress of tumor cells, allowing “ROS engineering” to fully exert anti-tumor effects. All of ROS generation, GSH depletion, and induced cellular autophagy caused by nanoagents have promoting effects on the occurrence of ferroptosis. Finally, the nanoagents show the ability to effectively treat colon tumors.
Lithium-oxygen (Li-O2) batteries have been regarded as an expectant successor for next-generation energy storage systems owing to their ultra-high theoretical energy density. However, the comprehensive properties of the commonly utilized organic salt electrolyte are still unsatisfactory, not to mention their expensive prices, which seriously hinders the practical production and application of Li-O2 batteries. Herein, we have proposed a low-cost all-inorganic nitrate electrolyte (LiNO3−KNO3−DMSO) for Li-O2 batteries. The inorganic nitrate electrolyte exhibits higher ionic conductivity and a wider electrochemical stability window than the organic salt electrolyte. The existence of K+ can stabilize the O2− intermediate, promoting the discharge process through the solution pathway with an enlarged capacity. Even at an ultra-low concentration of 0.01 M, the K+ can still remain stable to promote the solution discharge process and also possess a new function of inhibiting the dendrite growth by electrostatic shielding, further enhancing the battery stability and contributing to the long cycle lifetime. As a result, in the 0.99 M LiNO3−0.01 M KNO3−DMSO electrolyte, the Li-O2 batteries exhibit prolonged cycling performance (108 cycles) and excellent rate performance (2 A·g−1), significantly superior to the organic salt one.
Enhancing the therapeutic effect of existing treatments or developing new non-invasive treatments are important measures to achieve high-efficiency treatment of malignant tumors. Photodynamic therapy (PDT) is an emerging treatment modality, and the key for achieving high-efficiency PDT is to select light with strong tissue penetration depth and enhance the generation of reactive oxygen species (ROS). Although the upconversion nanoparticles (UCNPs) modified with the photosensitizers could achieve PDT with strong penetration depth under near-infrared light irradiation, the ROS generated by traditional single-pathway PDT is still insufficient. Herein, we developed a novel nanoconjugate (UCNP-Ce6/AIEgen) for dual-pathway reinforced PDT, in which the UCNPs were co-modified with chlorin e6 (Ce6) and luminogen with aggregation-induced emission (AIEgen). Due to the presence of AIEgen, UCNP-Ce6/AIEgen could avoid aggregation-caused luminescence quenching in biological water environments and convert upconversion luminescence (UCL) of UCNPs to Ce6-activatable fluorescence. Therefore, under the irradiation of 808 nm laser, UCNP-Ce6/AIEgen can not only undergo direct lanthanide-triplet energy transfer to activate Ce6, but also convert the UCL of UCNPs to the light that can activate Ce6 through Fӧrster resonance energy transfer to generate more ROS, thus promoting tumor cell apoptosis. This work broadens the applications of nanoconjugates of lanthanide-based inorganic materials and organic dyes, and provides a conception for reinforced PDT of tumors.
One-pot tandem catalysis has been regarded as one of the most atomic economic ways to produce secondary amines, the important platform molecules for chemical synthesis and pharmaceutical manufacture, but it is facing serious issues in overall efficiency. New promotional effects are highly desired for boosting the activity and regulating the selectivity of conventional tandem catalysts. In this work, we report a high-performance tandem catalyst with maximized synergistic effect among each counterpart by preciously manipulating the spatial structure, which involves the active CeO2/Pt component as kernel, the densely-coated N-doped C (NC) layer as selectivity controller, and the differentially-grown Co species as catalytic performance regulators. Through comprehensive investigations, the unique growth mechanism and the promotion effect of Co regulators are clarified. Specifically, the surface-landed Co clusters (Cocs) are crucial to selectivity by altering the adsorption configuration of benzylideneaniline intermediates. Meanwhile, the inner Co particles (Cops) are essential for activity by denoting their electrons to neighboring Ptps. Benefiting from the unique promotion effect, a remarkably-improved catalytic efficiency (100% nitrobenzene conversion with 94% N-benzylaniline selectivity) is achieved at a relatively low temperature of 80 °C, which is much better than that of CeO2/Pt (100% nitrobenzene conversion with 12% N-benzylaniline selectivity) and CeO2/Pt/NC (35% nitrobenzene conversion with 94% benzylideneaniline selectivity).
High entropy alloys (HEAs) based on five or more elements have caught worldwide attention due to the excellent properties endowed by their unique structures. Compared with traditional alloys, HEAs have high strength, thermal stability, oxidation resistance, and corrosion resistance. In recent years, the rapid development of HEAs shed light on the designing of new alloy systems. Their mixed multi-metallic sites give rise to a great potential for catalytic applications. In this review, we briefly introduce the phase structures of HEAs and their four core effects. In addition, the latest advances regarding HEAs are systematically summarized, with emphasis on the synthesis methods and catalytic applications, such as thermal-driven catalysis and electrocatalysis. To sum up, the current progress, challenges and future prospects of HEAs are discussed, hoping to provide a valuable route to understand this research field.
Achieving efficient integration of cancer diagnosis and therapy is of great significance to human health, but the construction of a multifunctional intelligent therapy system still faces great challenges. In this study, we report an integrated multifunctional nanocomposite constructed by a simple modular assembly technology. The nanocomposites are composed of three different nanomaterials: Fe3O4, Au, and NaErF4:0.5%Tm@NaYF4 upconversion nanoparticles (UCNPs). In this design, Fe3O4 nanoparticles have nanozyme effect of peroxidase-like activity, which can react with H2O2 in the tumor microenvironment to generate hydroxyl radicals. Because of its magnetic properties, it can help the nanocomposites to aggregate under the induction of magnetic fields. Au nanoparticles exhibit nanozyme effect of glucose oxidase-like activity. It can catalyze the conversion of glucose to gluconic acid and H2O2. Ingeniously, the generated H2O2 provides a source of reactants for the reaction of the Fe3O4 nanozyme. In addition, the photothermal effect of Au nanoparticles under 808 nm irradiation further enhanced the nanozyme activity of Fe3O4 and Au nanoparticles. Besides, UCNPs can emit near-infrared (NIR)-II fluorescence under 808 nm irradiation, which can provide imaging-guided during cancer treatment. Then, the nanocomposites were further modified by poly(vinylpyrrolidone) (PVP) to obtain UCNPs/Au/Fe3O4-PVP with good biocompatibility and high-efficiency cancer treatment ability.
Highly toxic reactive oxygen species (ROS) induced apoptosis and ferroptosis have been considered as significant cell death pathways for cancer therapy. However, insufficient amount of intracellular ROS extremely restricts the therapeutic effect. Toward this, we report a rationally designed nanocomposite (mUCC) with enhanced ROS generation ability, inducing the combination of apoptosis and ferroptosis through synergistic photodynamic therapy (PDT) and chemodynamic therapy (CDT). Under 808 nm near-infrared (NIR) light irradiation, photocatalytic reaction is triggered starting from the separation of electron–hole pairs on the surface of heterojunction (CeO2/CuO), realizing improved ROS production. Simultaneously, mUCC served as Fenton-like agent exhibits considerable ability to generate highly toxic ·OH under tumor microenvironment (TME). The boosted accumulation of ROS disrupts the redox balance within tumor cells and results in the integration of apoptosis and ferroptosis. In addition, mUCC shows satisfactory tumor targeting property benefiting from the cancer cell membrane functionalization under the guidance of magnetic resonance imaging (MRI) and NIR fluorescence imaging. The intelligent mUCC with good biocompatibility and excellent antitumor response achieves efficient tumor elimination under synergistic PDT and CDT. This work offers an elective approach for further development of ROS-based therapeutic nanoplatform in cancer therapy.
Electrochemical nitrogen reduction reaction (NRR) paves a new way to cost-efficient production of ammonia, but is still challenging in the sluggish kinetics caused by hydrogen evolution reaction competition and chemical inertness of N≡N bond. Herein, we report a “dual-site” strategy for boosting NRR performance. A high-performance catalyst is successfully constructed by anchoring isolated Fe and Mo atoms on hierarchical N doped carbon nanotubes through a facile self-sacrificing template route, which exhibits a remarkably improved NH3 yield rate of 26.8 μg·h−1·mg
A novel metal-free bulk nanocatalyst, S–N-codoped hollow carbon nanosphere/graphene aerogel (SNC-GA-1000), has been successfully fabricated using a facile and clean solid ion transition route. In this method, ZnS is used as the hard template and S source, while polydopamine acts as a reducing agent and carbon source. At a high annealing temperature, Zn metal is reduced and evaporates, leaving only free S vapor to diffuse into the carbon layer. Interestingly, the as-obtained SNC-GA-1000 exhibits much higher catalytic activity in an organic reduction reaction than unloaded bare S–N-codoped carbon nanospheres. Hydrothermal reduction of the graphene oxide sheets loaded with ZnS@polydopamine core–shell nanospheres (ZnS@PDA) affords a three-dimensional bulk graphene aerogel. Although nanosized catalysts exhibit high catalytic activities, their subsequent separation is not always satisfactory, making post-treatment difficult. This approach achieves a trade-off between activity and separability. More importantly, due to the 3D structural nature, such bulk and handheld nanocatalysts can be easily separated and recycled.