AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Absorption mechanism of carbon-nanotube paper-titanium dioxide as a multifunctional barrier material for lithium-sulfur batteries

Guiyin Xu1Jiaren Yuan1Xinyong Tao2Bing Ding1Hui Dou1Xiaohong Yan1,3( )Yang Xiao1Xiaogang Zhang1( )
Jiangsu Key Laboratory of Materials and Technology for Energy ConversionCollege of Material Science and Engineering, Nanjing University of Aeronautics and AstronauticsNanjing210016China
Department of Materials Science and EngineeringZhejiang University of Technology18 Chaowang Road, Hangzhou310014China
Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu ProvinceCollege of Electronic Science and Engineering, Nanjing University of Posts and TelecommunicationsNanjing210046China
Show Author Information

Graphical Abstract

Abstract

Lithium-sulfur batteries attract much interest as energy storage devices for their low cost, high specific capacity, and energy density. However, the insulating properties of sulfur and high solubility of lithium polysulfides decrease the utilization of active materials by the battery resulting in poor cycling performance. Herein, we design a multifunctional carbon-nanotube paper/titanium-dioxide barrier which effectively reduces active material loss and suppresses the diffusion of lithium polysulfides to the anode, thereby improving the cycling stability of lithium-sulfur batteries. Using this barrier, an activated carbon/sulfur cathode with 70% sulfur content delivers stable cycling performance and high Coulombic efficiency (~99%) over 250 cycles at a current rate of 0.5 C. The improved electrochemical performance is attributed to the synergistic effects of the carbon nanotube paper and titanium dioxide, involving the physical barrier, chemical adsorption from the binding formation of Ti-S and S-O, and other interactions unique to the titanium dioxide and sulfur species.

Electronic Supplementary Material

Download File(s)
nr-8-9-3066_ESM.pdf (3.2 MB)

References

1

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19-29.

2

Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Lithium-sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem. Int. Ed. 2013, 52, 13186-13200.

3

Xu, G. Y.; Ding, B.; Pan, J.; Nie, P.; Shen, L. F.; Zhang, X. G. High performance lithium-sulfur batteries: Advances and challenges. J. Mater. Chem. A 2014, 2, 12662-12676.

4

Wang, J. L.; Yao, Z. D.; Monroe, C. W.; Yang, J.; Nuli, Y. Carbonyl-β-cyclodextrin as a novel binder for sulfur composite cathodes in rechargeable lithium batteries. Adv. Funct. Mater. 2013, 23, 1194-1201.

5

Chen, S. Q.; Huang, X. D.; Liu, H.; Sun, B.; Yeoh, W.; Li, K. F.; Zhang, J. Q.; Wang, G. X. 3D hyperbranched hollow carbon nanorod architectures for high-performance lithium-sulfur batteries. Adv. Energy Mater. 2014, 4, DOI: 10.1002/aenm.201301761.

6

Niu, J. J.; Kushima, A.; Li, M. D.; Wang, Z. Q.; Li, W. B.; Wang, C.; Li, J. Scalable synthesis of a sulfur nanosponge cathode for a lithium-sulfur battery with improved cyclability. J. Mater. Chem. A 2014, 2, 19788-19796.

7

Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500-506.

8

Xu, G.; Ding, B.; Nie, P.; Shen, L.; Dou, H.; Zhang, X. Hierarchically porous carbon encapsulating sulfur as a superior cathode material for high performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2013, 6, 194-199.

9

Zhao, M. Q.; Zhang, Q.; Huang, J. Q.; Tian, G. L.; Nie, J. Q.; Peng, H. J.; Wei, F. Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries. Nat. Commun. 2014, 5, 3410.

10

Gu, X. X.; Wang, Y. Z.; Lai, C.; Qiu, J. X.; Li, S.; Hou, Y. L.; Martens, W.; Mahmood, N.; Zhang, S. Q. Microporous bamboo biochar for lithium-sulfur batteries. Nano Res. 2015, 8, 129-139.

11

Mikhaylik, Y. V.; Akridge, J. R. Polysulfide shuttle study in the Li/S battery system. J. Electrochem. Soc. 2004, 151, A1969-A1976.

12

Zheng, G. Y.; Yang, Y.; Cha, J. J.; Hong, S. S.; Cui, Y. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett. 2011, 11, 4462-4467.

13

Ji, L. W.; Rao, M. M.; Zheng, H. M.; Zhang, L.; Li, Y. C.; Duan, W. H.; Guo, J. H.; Cairns, E. J.; Zhang, Y. G. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J. Am. Chem. Soc. 2011, 133, 18522-18525.

14

Li, G. C.; Li, G. R.; Ye, S. H.; Gao, X. P. A polyaniline-coated sulfur/carbon composite with an enhanced high-rate capability as a cathode material for lithium/sulfur batteries. Adv. Energy Mater. 2012, 2, 1238-1245.

15

Zhou, W. D.; Yu, Y. C.; Chen, H.; DiSalvo, F. J.; Abruña, H. D. Yolk-shell structure of polyaniline-coated sulfur for lithium-sulfur batteries. J. Am. Chem. Soc. 2013, 135, 16736-16743.

16

Li, W. Y.; Zhang, Q. F.; Zheng, G. Y.; Seh, Z. W.; Yao, H. B.; Cui, Y. Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance. Nano Lett. 2013, 13, 5534-5540.

17

Evers, S.; Yim, T.; Nazar, L. F. Understanding the nature of absorption/adsorption in nanoporous polysulfide sorbents for the Li-S battery. J. Phys. Chem. C 2012, 116, 19653-19658.

18

Tao, X. Y.; Wang, J. G.; Ying, Z. G.; Cai, Q. X.; Zheng, G. Y.; Gan, Y. P.; Huang, H.; Xia, Y.; Liang, C.; Zhang, W. K.; Cui, Y. Strong sulfur binding with conducting magnéli-phase TinO2n-1 nanomaterials for improving lithium-sulfur batteries. Nano Lett. 2014, 14, 5288-5294.

19

Zhou, G. M.; Zhao, Y. B.; Zu, C. X.; Manthiram, A. Free-standing TiO2 nanowire-embedded graphene hybrid membrane for advanced Li/dissolved polysulfide batteries. Nano Energy 2015, 12, 240-249.

20

Wei Seh, Z.; Li, W. Y.; Cha, J. J.; Zheng, G. Y.; Yang, Y.; McDowell, M. T.; Hsu, P. C.; Cui, Y. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 2013, 4, 1331.

21

Li, J. Y.; Ding, B.; Xu, G. Y.; Hou, L. R.; Zhang, X. G.; Yuan, C. Z. Enhanced cycling performance and electrochemical reversibility of a novel sulfur-impregnated mesoporous hollow TiO2 sphere cathode for advanced Li-S batteries. Nanoscale 2013, 5, 5743-5746.

22

Xu, G. Y.; Ding, B.; Shen, L. F.; Nie, P.; Han, J. P.; Zhang, X. G. Sulfur embedded in metal organic framework-derived hierarchically porous carbon nanoplates for high performance lithium-sulfur battery. J. Mater. Chem. A 2013, 1, 4490-4496.

23

Demir-Cakan, R.; Morcrette, M.; Gangulibabu; Gueguen, A.; Dedryvere, R.; Tarascon, J. M. Li-S batteries: Simple approaches for superior performance. Energy Environ. Sci. 2013, 6, 176-182.

24

Zhou, W. D.; Xiao, X. C.; Cai, M.; Yang, L. Polydopamine-coated, nitrogen-doped, hollow carbon-sulfur double-layered core-shell structure for improving lithium-sulfur batteries. Nano Lett. 2014, 14, 5250.

25

Gao, J.; Abruña, H. D. Key parameters governing the energy density of rechargeable Li/S batteries. J. Phys. Chem. Lett. 2014, 5, 882-885.

26

Zu, C. X.; Su, Y. S.; Fu, Y. Z.; Manthiram, A. Improved lithium-sulfur cells with a treated carbon paper interlayer. Phys. Chem. Chem. Phys. 2013, 15, 2291-2297.

27

Su, Y. S.; Manthiram, A. A new approach to improve cycle performance of rechargeable lithium-sulfur batteries by inserting a free-standing MWCNT interlayer. Chem. Comm. 2012, 48, 8817-8819.

28

Su, Y. S.; Manthiram, A. Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nat. Commun. 2012, 3, 1166.

29

Xu, G. Y.; Ding, B.; Nie, P.; Shen, L. F.; Wang, J.; Zhang, X. G. Porous nitrogen-doped carbon nanotubes derived from tubular polypyrrole for energy-storage applications. Chem. Eur. J. 2013, 19, 12306-12312.

30

Hu, Z. H.; Srinivasan, M. P.; Ni, Y. Preparation of mesoporous high-surface-area activated carbon. Adv. Mater. 2000, 12, 62-65.

31

Miao, L. X.; Wang, W. K.; Yuan, K.; Yang, Y. S.; Wang, A. B. A lithium-sulfur cathode with high sulfur loading and high capacity per area: A binder-free carbon fiber cloth-sulfur material. Chem. Comm. 2014, 50, 13231.

32

Xu, R.; Belharouak, I.; Li, J. C. M.; Zhang, X. F.; Bloom, I.; Bareño, J. Role of polysulfides in self-healing lithium-sulfur batteries. Adv. Energy Mater. 2013, 3, 833-838.

33

Lee, D. J.; Agostini, M.; Park, J. W.; Sun, Y. K.; Hassoun, J.; Scrosati, B. Progress in lithium-sulfur batteries: The effective role of a polysulfide-added electrolyte as buffer to prevent cathode dissolution. ChemSusChem 2013, 6, 2245-2248.

34

Qiu, Y. C.; Li, W. F.; Zhao, W.; Li, G. Z.; Hou, Y.; Liu, M. N.; Zhou, L. S.; Ye, F. M.; Li, H. F.; Wei, Z. H. et al. High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene. Nano Lett. 2014, 14, 4821-4827.

35

Meng, F. C.; Zhang, X. H.; Li, R.; Zhao, J. N.; Xuan, X. H.; Wang, X. B.; Zou, J. Y.; Li, Q. W. Electro-induced mechanical and thermal responses of carbon nanotube fibers. Adv. Mater. 2014, 26, 2480-2485.

36

Chen, L. F.; Yu, Z. Y.; Ma, X.; Li, Z. Y.; Yu, S. H. In situ hydrothermal growth of ferric oxides on carbon cloth for low-cost and scalable high-energy-density supercapacitors. Nano Energy 2014, 9, 345-354.

37

Chen, L. F.; Yu, Z. Y.; Wang, J. J.; Li, Q. X.; Tan, Z. Q.; Zhu, Y. W.; Yu, S. H. Metal-like fluorine-doped β-FeOOH nanorods grown on carbon cloth for scalable high-performance supercapacitors. Nano Energy 2015, 11, 119-128.

38

Juang, R. S.; Hsieh, C. T.; Chen, P. A.; Chen, Y. F. Microwave-assisted synthesis of titania coating onto polymeric separators for improved lithium-ion battery performance. J. Power Sources 2015, 286, 526-533.

39

Yang, Z. G.; Choi, D.; Kerisit, S.; Rosso, K. M.; Wang, D. H.; Zhang, J.; Graff, G.; Liu, J. Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review. J. Power Sources 2009, 192, 588-598.

40

Jayaprakash, N.; Shen, J.; Moganty, S. S.; Corona, A.; Archer, L. A. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew. Chem. Int. Ed. 2011, 50, 5904-5908.

41

Zu, C. X.; Manthiram, A. Hydroxylated graphene-sulfur nanocomposites for high-rate lithium-sulfur batteries. Adv. Energy Mater. 2013, 3, 1008-1012.

42

Lu, S. T.; Cheng, Y. W.; Wu, X. H.; Liu, J. Significantly improved long-cycle stability in high-rate Li-S batteries enabled by coaxial graphene wrapping over sulfur-coated carbon nanofibers. Nano Lett. 2013, 13, 2485-2489.

43

Pang, Q.; Kundu, D.; Cuisinier, M.; Nazar, L. F. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat. Commun. 2014, 5, 4759.

44

Su, Y. S.; Fu, Y. Z.; Guo, B. K.; Dai, S.; Manthiram, A. Fast, reversible lithium storage with a sulfur/long-chain-polysulfide redox couple. Chem. Eur. J. 2013, 19, 8621-8626.

45

Seh, Z. W.; Yu, J. H.; Li, W.; Hsu, P. C.; Wang, H.; Sun, Y.; Yao, H.; Zhang, Q.; Cui, Y. Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes. Nat. Commun. 2014, 5, 5017.

Nano Research
Pages 3066-3074
Cite this article:
Xu G, Yuan J, Tao X, et al. Absorption mechanism of carbon-nanotube paper-titanium dioxide as a multifunctional barrier material for lithium-sulfur batteries. Nano Research, 2015, 8(9): 3066-3074. https://doi.org/10.1007/s12274-015-0812-0

724

Views

98

Crossref

N/A

Web of Science

101

Scopus

8

CSCD

Altmetrics

Received: 15 March 2015
Revised: 02 May 2015
Accepted: 07 May 2015
Published: 14 August 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return