Sort:
Research Article Issue
Absorption mechanism of carbon-nanotube paper-titanium dioxide as a multifunctional barrier material for lithium-sulfur batteries
Nano Research 2015, 8(9): 3066-3074
Published: 14 August 2015
Abstract PDF (2.9 MB) Collect
Downloads:26

Lithium-sulfur batteries attract much interest as energy storage devices for their low cost, high specific capacity, and energy density. However, the insulating properties of sulfur and high solubility of lithium polysulfides decrease the utilization of active materials by the battery resulting in poor cycling performance. Herein, we design a multifunctional carbon-nanotube paper/titanium-dioxide barrier which effectively reduces active material loss and suppresses the diffusion of lithium polysulfides to the anode, thereby improving the cycling stability of lithium-sulfur batteries. Using this barrier, an activated carbon/sulfur cathode with 70% sulfur content delivers stable cycling performance and high Coulombic efficiency (~99%) over 250 cycles at a current rate of 0.5 C. The improved electrochemical performance is attributed to the synergistic effects of the carbon nanotube paper and titanium dioxide, involving the physical barrier, chemical adsorption from the binding formation of Ti-S and S-O, and other interactions unique to the titanium dioxide and sulfur species.

Open Access Research Article Issue
Template-Free Synthesis of Ordered Mesoporous NiO/Poly (Sodium-4-Styrene Sulfonate) Functionalized Carbon Nanotubes Composite for Electrochemical Capacitors
Nano Research 2009, 2(9): 722-732
Published: 12 September 2009
Abstract PDF (1.7 MB) Collect
Downloads:56

We report the first example of a practical and efficient template-free strategy for synthesizing ordered mesoporous NiO/poly(sodium-4-styrene sulfonate) (PSS) functionalized carbon nanotubes (FCNTs) composites by calcining a Ni(OH)2/FCNTs precursor prepared by refluxing an alkaline solution of Ni(NH3)x2+ and FCNTs at 97 ℃ for 1 h. The morphology and structure were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Thermal decomposition of the precursor results in the formation of ordered mesoporous NiO/FCNTs composite (ca. 48 wt% NiO) with large specific surface area. Due to its enhanced electronic conductivity and hierarchical (meso- and macro-) porosity, composite simultaneously meets the three requirements for energy storage in electrochemical capacitors at high rate, namely, good electron conductivity, highly accessibleelectrochemical surface areas owing to the existence of mesopores, and efficient mass transport from the macropores. Electrochemical data demonstrated that the ordered mesoporous NiO/FCNTs composite is capable of delivering a specific capacitance (SC) of 526 F/g at 1 A/g and a SC of 439 F/g even at 6 A/g, and show a degradation of only ca. 6% in SC after 2000 continuous charge/discharge cycles.

Total 2
1/11GOpage