Graphical Abstract

Naturally abundant transition metal oxides with high theoretical capacity have attracted more attention than commercial graphite for use as anodes in lithium-ion batteries. Lithium-ion battery electrodes that exhibit excellent electrochemical performance can be efficiently achieved via three-dimensional (3D) architectures decorated with conductive polymers and carbon. As such, we developed 3D carbon-supported amorphous vanadium oxide microspheres and crystalline V2O3 microspheres via a facile solvothermal method. Both samples were assembled with ultrathin nanosheets, which consisted of uniformly distributed vanadium oxides and carbon. The formation processes were clearly revealed through a series of time-dependent experiments. These microspheres have numerous active reaction sites, high electronic conductivity, and excellent structural stability, which are all far superior to those of other lithium-ion battery anodes. More importantly, 95% of the second-cycle discharge capacity was retained after the amorphous microspheres were subjected to 7, 000 cycles at a high rate of 2, 000 mA/g. The crystalline microspheres also exhibited a high-rate and long-life performance, as evidenced by a 98% retention of the second-cycle discharge capacity after 9, 000 cycles at a rate of 2, 000 mA/g. Therefore, this facile solvothermal method as well as unique carbon-supported and nanosheet-assembled microspheres have significant potential for the synthesis of and use in, respectively, lithium-ion batteries.
Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652-657.
Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364-5457.
Liu, Y. X.; Wang, D. S.; Peng, Q.; Chu, D. R.; Liu, X. W.; Li, Y. D. Directly assembling ligand-free ZnO nanocrystals into three-dimensional mesoporous structures by oriented attachment. Inorg. Chem. 2011, 50, 5841-5847.
Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496-499.
Armstrong, M. J.; O'Dwyer, C.; Macklin, W. J.; Holmes, J. D. Evaluating the performance of nanostructured materials as lithium-ion battery electrodes. Nano Res. 2014, 7, 1-62.
Liu, B.; Zhang, J.; Wang, X. F.; Chen, G.; Chen, D.; Zhou, C. W.; Shen, G. Z. Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett. 2012, 12, 3005-3011.
Zhou, L.; Zhao, D. Y.; Lou, X. W. LiNi0.5Mn1.5O4 hollow structures as high-performance cathodes for lithium-ion batteries. Angew. Chem., Int. Ed. 2012, 51, 239-241.
Wu, H. B.; Chen, J. S.; Hng, H. H.; Lou, X. W. Nanostructured metal oxide-based materials as advanced anodes for lithium- ion batteries. Nanoscale 2012, 4, 2526-2542.
Wei, Q. L.; Tan, S. S.; Liu, X. Y.; Yan, M. Y.; Wang, F. C.; Li, Q. D.; An, Q. Y.; Sun, R. M.; Zhao, K. N.; Wu, H. A. et al. Novel polygonal vanadium oxide nanoscrolls as stable cathode for lithium storage. Adv. Funct. Mater. 2015, 25, 1773-1779.
He, C. N.; Wu, S.; Zhao, N. Q.; Shi, C. S.; Liu, E. Z.; Li, J. J. Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. ACS Nano 2013, 7, 4459-4469.
Jeong, J. M.; Choi, B. G.; Lee, S. C.; Lee, K. G.; Chang, S. J.; Han, Y. K.; Lee, Y. B.; Lee, H. U.; Kwon, S.; Lee, G. et al. Hierarchical hollow spheres of Fe2O3@polyaniline for lithium ion battery anodes. Adv. Mater. 2013, 25, 6250-6255.
Wang, L. J.; Zhang, K.; Hu, Z.; Duan, W. C.; Cheng, F. Y.; Chen, J. Porous CuO nanowires as the anode of rechargeable Na-ion batteries. Nano Res. 2014, 7, 199-208.
Lee, C. W.; Seo, S. D.; Kim, D. W.; Park, S.; Jin, K.; Kim, D. W.; Hong, K. S. Heteroepitaxial growth of ZnO nanosheet bands on ZnCo2O4 submicron rods toward high-performance Li ion battery electrodes. Nano Res. 2013, 6, 348-355.
Jian, Z. L.; Zheng, M. B.; Liang, Y. L.; Zhang, X. X.; Gheytani, S.; Lan, Y. C.; Shi, Y.; Yao, Y. Li3VO4 anchored graphene nanosheets for long-life and high-rate lithium-ion batteries. Chem. Commun. 2015, 51, 229-231.
Su, D. W.; Dou, S. X.; Wang, G. X. Mesocrystal Co3O4 nanoplatelets as high capacity anode materials for Li-ion batteries. Nano Res. 2014, 7, 794-803.
Xie, R. G.; Li, Z.; Peng, X. G. Nucleation kinetics vs. chemical kinetics in the initial formation of semiconductor nanocrystals. J. Am. Chem. Soc. 2009, 131, 15457-15466.
Chen, Y.; Song, B. H.; Li, M.; Lu, L.; Xue, J. M. Fe3O4 nanoparticles embedded in uniform mesoporous carbon spheres for superior high-rate battery applications. Adv. Funct. Mater. 2014, 24, 319-326.
Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500-506.
Chen, P. C.; Xu, J.; Chen, H. T.; Zhou, C. W. Hybrid silicon-carbon nanostructured composites as superior anodes for lithium ion batteries. Nano Res. 2011, 4, 290-296.
Palacin, M. R. Recent advances in rechargeable battery materials: A chemist's perspective. Chem. Soc. Rev. 2009, 38, 2565-2575.
Niu, C. J.; Meng, J. S.; Wang, X. P.; Han, C. H.; Yan, M. Y.; Zhao, K. N.; Xu, X. M.; Ren, W. H.; Zhao, Y. L.; Xu, L. et al. General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis. Nat. Commun. 2015, 6, 7402.
Yao, J.; Yan, H.; Lieber, C. M. A nanoscale combing technique for the large-scale assembly of highly aligned nanowires. Nat. Nanotechnol. 2013, 8, 329-335.
Wu, H.; Zheng, G. Y.; Liu, N.; Carney, T. J.; Yang, Y.; Cui, Y. Engineering empty space between Si nanoparticles for lithium-ion battery anodes. Nano Lett. 2012, 12, 904-909.
Magasinski, A.; Dixon, P.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 2010, 9, 353-358.
Yan, X. Q.; Wang, X. J.; Tang, Y.; Ma, G. C.; Zou, S. H.; Li, R. H.; Peng, X. G.; Dai, S.; Fan, J. Unusual loading- dependent sintering-resistant properties of gold nanoparticles supported within extra-large mesopores. Chem. Mater. 2013, 25, 1556-1563.
Zhou, W. J.; Cao, X. H.; Zeng, Z. Y.; Shi, W. H.; Zhu, Y. Y.; Yan, Q. Y.; Liu, H.; Wang, J. Y.; Zhang, H. One-step synthesis of Ni3S2 nanorod@Ni(OH)2 nanosheet core-shell nanostructures on a three-dimensional graphene network for high-performance supercapacitors. Energy Environ. Sci. 2013, 6, 2216-2221.
Mai, L. Q.; Tian, X. C.; Xu, X.; Chang, L.; Xu, L. Nanowire electrodes for electrochemical energy storage devices. Chem. Rev. 2014, 114, 11828-11862.
Zhang, H. G.; Yu, X. D.; Braun, P. V. Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nat. Nanotechnol. 2011, 6, 277-281.
Qiu, Y. C.; Xu, G. L.; Kuang, Q.; Sun, S. G.; Yang, S. H. Hierarchical WO3 flowers comprising porous single-crystalline nanoplates show enhanced lithium storage and photocatalysis. Nano Res. 2012, 5, 826-832.
Liu, N.; Lu, Z. D.; Zhao, J.; McDowell, M. T.; Lee, H. W.; Zhao, W. T.; Cui, Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 2014, 9, 187-192.
Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Dai, H. J. Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. J. Am. Chem. Soc. 2013, 135, 2013-2036.
Xu, Y. X.; Huang, X. Q.; Lin, Z. Y.; Zhong, X.; Huang, Y.; Duan, X. F. One-step strategy to graphene/Ni(OH)2 composite hydrogels as advanced three-dimensional supercapacitor electrode materials. Nano Res. 2013, 6, 65-76.
Li, L.; Lu, H.; Yang, Z. Y.; Tong, L. M.; Bando, Y.; Golberg, D. Bandgap-graded CdSxSe1−x nanowires for high- performance field-effect transistors and solar cells. Adv. Mater. 2013, 25, 1109-1113.
Chen, S. Q.; Bao, P. T.; Huang, X. D.; Sun, B.; Wang, G. X. Hierarchical 3D mesoporous silicon@graphene nanoarchitectures for lithium ion batteries with superior performance. Nano Res. 2014, 7, 85-94.
Liu, X. Q.; Wang, C. L.; Cai, B.; Xiao, X. H.; Guo, S. S.; Fan, Z. Y.; Li, J. C.; Duan, X. F.; Liao, L. Rational design of amorphous indium zinc oxide/carbon nanotube hybrid film for unique performance transistors. Nano Lett. 2012, 12, 3596-3601.
Luo, J. S.; Liu, J. L.; Zeng, Z. Y.; Ng, C. F.; Ma, L. J.; Zhang, H.; Lin, J. Y.; Shen, Z. X.; Fan, H. J. Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability. Nano Lett. 2013, 13, 6136-6143.
Niu, C. J.; Meng, J. S.; Han, C. H.; Zhao, K. N.; Yan, M. Y.; Mai, L. Q. VO2 nanowires assembled into hollow microspheres for high-rate and long-life lithium batteries. Nano Lett. 2014, 14, 2873-2878.
Sheng, J. Z.; Li, Q. D.; Wei, Q. L.; Zhang, P. F.; Wang, Q. Q.; Lv, F.; An, Q. Y.; Chen, W.; Mai, L. Q. Metastable amorphous chromium-vanadium oxide nanoparticles with superior performance as a new lithium battery cathode. Nano Res. 2014, 7, 1604-1612.
An, Q. Y.; Zhang, P. F.; Xiong, F. Y.; Wei, Q. L.; Sheng, J. Z.; Wang, Q. Q.; Mai, L. Q. Three-dimensional porous V2O5 hierarchical octahedrons with adjustable pore architectures for long-life lithium batteries. Nano Res. 2015, 8, 481-490.
Pan, A. Q.; Wu, H. B.; Yu, L.; Lou, X. W. Template-free synthesis of VO2 hollow microspheres with various interiors and their conversion into V2O5 for lithium-ion batteries. Angew. Chem. 2013, 125, 2282-2286.
Li, H. Q.; He, P.; Wang, Y. G.; Hosono, E.; Zhou, H. S. High-surface vanadium oxides with large capacities for lithium-ion batteries: From hydrated aerogel to nanocrystalline VO2(B), V6O13 and V2O5. J. Mater. Chem. 2011, 21, 10999-11009.
Sun, X.; Zhou, C. G.; Xie, M.; Hu, T.; Sun, H. T.; Xin, G. Q.; Wang, G. K.; George, S. M.; Lian, J. Amorphous vanadium oxide coating on graphene by atomic layer deposition for stable high energy lithium ion anodes. Chem. Commun. 2014, 50, 10703-10706.
Augustyn, V.; Dunn, B. Low-potential lithium-ion reactivity of vanadium oxide aerogels. Electrochim. Acta 2013, 88, 530-535.
An, Q. Y.; Wei, Q. L.; Mai, L. Q.; Fei, J. Y.; Xu, X.; Zhao, Y. L.; Yan, M. Y.; Zhang, P. F.; Huang, S. Z. Supercritically exfoliated ultrathin vanadium pentoxide nanosheets with high rate capability for lithium batteries. Phys. Chem. Chem. Phys. 2013, 15, 16828-16833.
Zhao, D.; Zheng, L. R.; Xiao, Y.; Wang, X.; Cao M. H. Lithium storage in microstructures of amorphous mixed- valence vanadium oxide as anode materials. ChemSusChem 2015, 8, 2212-2222.
Xu, Y.; Zheng, L.; Wu, C. Z.; Qi, F.; Xie, Y. New-phased metastable V2O3 porous urchinlike micronanostructures: Facile synthesis and application in aqueous lithium ion batteries. Chem. —Eur. J. 2011, 17, 384-391.
Chae, O. B.; Kim, J.; Park, I.; Jeong, H.; Ku, J. H.; Ryu, J. H.; Kang, K.; Oh, S. M. Reversible lithium storage at highly populated vacant sites in an amorphous vanadium pentoxide electrode. Chem. Mater. 2014, 26, 5874-5881.
Zhang, K.; Kim, H. J.; Shi, X. J.; Lee, J. T.; Choi, J. M.; Song, M. S.; Park, J. H. Graphene/acid coassisted synthesis of ultrathin MoS2 nanosheets with outstanding rate capability for a lithium battery anode. Inorg. Chem. 2013, 52, 9807-9812.
Nan, C. Y.; Lin, Z.; Liao, H. G.; Song, M. K.; Li, Y. D.; Cairns, E. J. Durable carbon-coated Li2S core-shell spheres for high performance lithium/sulfur cells. J. Am. Chem. Soc. 2014, 136, 4659-4663.
Zhao, Y.; Gao, D. L.; Ni, J. F.; Gao, L. J.; Yang, J.; Li, Y. One- pot facile fabrication of carbon-coated Bi2S3 nanomeshes with efficient Li-storage capability. Nano Res. 2014, 7, 765-773.
Han, F.; Ma, L. J.; Sun, Q.; Lei, C.; Lu, A. H. Rationally designed carbon-coated Fe3O4 coaxial nanotubes with hierarchical porosity as high-rate anodes for lithium ion batteries. Nano Res. 2014, 7, 1706-1717.
Dimesso, L.; Förster, C.; Jaegermann, W.; Khanderi, J. P.; Tempel, H.; Popp, A.; Engstler, J.; Schneider, J. J.; Sarapulova, A.; Mikhailova, D. et al. Developments in nanostructured LiMPO4 (M = Fe, Co, Ni, Mn) composites based on three dimensional carbon architecture. Chem. Soc. Rev. 2012, 41, 5068-5080.
Jang, B.; Park, M.; Chae, O. B.; Park, S.; Kim, Y.; Oh, S. M.; Piao, Y. Z.; Hyeon, T. Direct synthesis of self-assembled ferrite/carbon hybrid nanosheets for high performance lithium-ion battery anodes. J. Am. Chem. Soc. 2012, 134, 15010-15015.
Zhou, L.; Zhao, D. Y.; Lou, X. W. Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries. Adv. Mater. 2012, 24, 745-748.
Grugeon, S.; Laruelle, S.; Dupont, L.; Tarascon, J. M. An update on the reactivity of nanoparticles Co-based compounds towards Li. Solid State Sci. 2003, 5, 895-904.
Jiang, L.; Qu, Y.; Ren, Z. Y.; Yu, P.; Zhao, D. D.; Zhou, W.; Wang, L.; Fu, H. G. In situ carbon-coated yolk-shell V2O3 microspheres for lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 1595-1601.
Lee, J. E.; Yu, S. H.; Lee, D. J.; Lee, D. C.; Han, S. I.; Sung, Y. E.; Hyeon, T. Facile and economical synthesis of hierarchical carbon-coated magnetite nanocomposite particles and their applications in lithium ion battery anodes. Energy Environ. Sci. 2012, 5, 9528-9533.
Zheng, C.; Zhou, X. F.; Cao, H. L.; Wang, G. H.; Liu, Z. P. Synthesis of porous graphene/activated carbon composite with high packing density and large specific surface area for supercapacitor electrode material. J. Power Sources 2014, 258, 290-296.
Choi, S. H.; Kang, Y. C. Aerosol-assisted rapid synthesis of SnS-C composite microspheres as anode material for Na-ion batteries. Nano Res. 2015, 8, 1595-1603.
Choi, S. H.; Lee, J. K.; Kang, Y. C. Three-dimensional porous graphene-metal oxide composite microspheres: Preparation and application in Li-ion batteries. Nano Res. 2015, 8, 1584-1594.
Fei, H. L.; Peng, Z. W.; Li, L.; Yang, Y.; Lu, W.; Samuel, E. L. G.; Fan, X. J.; Tour, J. M. Preparation of carbon-coated iron oxide nanoparticles dispersed on graphene sheets and applications as advanced anode materials for lithium-ion batteries. Nano Res. 2014, 7, 502-510.
Pan, A. Q.; Wu, H. B.; Zhang, L.; Lou, X. W. Uniform V2O5 nanosheet-assembled hollow microflowers with excellent lithium storage properties. Energy Environ. Sci. 2013, 6, 1476-1479.