AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Topological to trivial insulating phase transition in stanene

Michel Houssa1( )Bas van den Broek1Konstantina Iordanidou1Anh Khoa Augustin Lu1,2Geoffrey Pourtois2Jean-Pierre Locquet1Valery Afanas'ev1André Stesmans1
Department of Physics and AstronomyUniversity of LeuvenCelestijnenlaan 200DB-3001Leuven, Belgium
imec75 KapeldreefB-3001Leuven, Belgium
Show Author Information

Graphical Abstract

Abstract

Electronic properties of stanene, the Sn counterpart of graphene are theoretically studied using first-principles simulations. The topological to trivial insulating phase transition induced by an out-of-plane electric field or by quantum confinement effects is predicted. The results highlight the potential to use stanene nanoribbons in gate-voltage controlled dissipationless spin-based devices and are used to set the minimal nanoribbon width for such devices, which is typically approximately 5 nm.

References

1

Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898-2926.

2

Fiori, G.; Bonaccorso, F; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768-779.

3

Schwierz, F.; Pezoldt, J.; Granzner, R. Two-dimensional materials and their prospects in transistor electronics. Nanoscale 2015, 7, 8261-8283.

4

Lin, Y. M.; Dimitrakopoulos, C.; Jenkins, K. A.; Farmer, D. B.; Chiu, Y. H.; Grill, A.; Avouris, Ph. 100-GHz transistors from wafer-scale epitaxial graphene. Science 2010, 327, 662.

5

Kang, K.; Xie, S.; Huang, L. J.; Han, Y. M.; Huang, P. Y.; Mak, K. F.; Kim, C. J.; Muller, D.; Park, J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656-660.

6

Vogt, P.; De Padova, P.; Quaresima, C.; Avila, J.; Frantzeskakis, E.; Asensio, M. C.; Resta, A.; Ealet, B.; Le Lay, G. Silicene: Compelling experimental evidence for graphenelike two- dimensional silicon. Phys. Rev. Lett. 2012, 108, 155501.

7

Tao, L.; Cinquanta, E.; Chiappe, D.; Grazianetti, C.; Fanciulli, M.; Dubey, M.; Molle, A.; Akinwande, D. Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 2015, 10, 227-231.

8

Houssa, M.; Dimoulas, A.; Molle, A. Silicene: A review of recent experimental and theoretical investigations. J. Phys. : Condens. Matter 2015, 27, 253002-253020.

9

Dávila, M. E.; Xian, L.; Cahangirov, S.; Rubio, A.; Le Lay, G. Germanene: A novel two-dimensional germanium allotrope akin to graphene and silicene. New J. Phys. 2014, 16, 095002.

10

Xu, Y.; Yan, B. H.; Zhang, H. J.; Wang, J.; Xu, G.; Tang, P.; Duan, W.; Zhang, S. Z. Large-gap quantum spin hall insulators in tin films. Phys. Rev. Lett. 2013, 111, 136804.

11

Wu, S. C.; Shan, G. C.; Yan, B. H. Prediction of near-room- temperature quantum anomalous Hall effect on honeycomb materials. Phys. Rev. Lett. 2014, 113, 256401.

12

Suarez Negreira, A.; Vandenberghe, W. G.; Fischetti, M. V. Ab initio study of the electronic properties and thermodynamic stability of supported and functionalized two-dimensional Sn films. Phys. Rev. B 2015, 91, 245103.

13

van den Broek, B.; Houssa, M.; Scalise, E.; Pourtois, G.; Afanas'ev, V. V.; Stesmans, A. Two-dimensional hexagonal tin: ab initio geometry, stability, electronic structure and functionalization. 2D Materials 2014, 1, 021004.

14

Zhu, F. F.; Chen, W. J.; Xu, Y.; Gao, C. L.; Guan, D. D.; Liu, C. H.; Qian, D.; Zhang, S. C.; Jia, J. F. Epitaxial growth of two-dimensional stanene. Nat. Mater. 2015, 14, 1020-1025.

15

Xu, Y.; Tang, P. Z.; Zhang, S. C. Large-gap quantum spin Hall states in decorated stanene grown on a substrate. Phys. Rev. B 2015, 92, 081112.

16

Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. Quantum espresso: A modular and open-source software project for quantum simulations of materials. J. Phys. : Condens. Matter 2009, 21, 395502.

17

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.

18

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.

19

Ezawa, M. A topological insulator and helical zero mode in silicene under an inhomogeneous electric field. New J. Phys. 2012, 14, 033003.

20

Kane, C. L.; Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 2005, 95, 226801.

21

Min, H.; Hill, J. E.; Sinitsyn, N. A.; Sahu, B. R., Kleinman, L.; MacDonald, A. H. Intrinsic and Rashba spin-orbit interactions in graphene sheets. Phys. Rev. B 2006, 74, 165310.

22

Liu, C. C.; Jiang, H.; Yao, Y. G. Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. Phys. Rev. B 2011, 84, 195430.

23

Barone, V.; Hod, O.; Scuseria, G. E. Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett. 2006, 6, 2748-2754.

Nano Research
Pages 774-778
Cite this article:
Houssa M, Broek Bvd, Iordanidou K, et al. Topological to trivial insulating phase transition in stanene. Nano Research, 2016, 9(3): 774-778. https://doi.org/10.1007/s12274-015-0956-y

690

Views

36

Crossref

N/A

Web of Science

35

Scopus

0

CSCD

Altmetrics

Received: 15 September 2015
Revised: 18 November 2015
Accepted: 24 November 2015
Published: 09 January 2016
© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2015
Return