AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Biomimetic smart nanochannels for power harvesting

Ganhua Xie1Liping Wen2( )Lei Jiang1,2( )
Beijing National Laboratory for Molecular Sciences (BNLMS)Key Laboratory of Green PrintingInstitute of ChemistryChinese Academy of SciencesBeijing100190China
Laboratory of Bioinspired Smart Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190China
Show Author Information

Graphical Abstract

Abstract

With the increasing requirements of reliable and environmentally friendly energy resources, porous materials for sustainable energy conversion technologies have attracted intensive interest in the past decades. As an important block of porous materials, biomimetic smart nanochannels (BSN) have been developed rapidly into an attractive field for their well-tunable geometry and chemistry. With inspiration from nature, many works have been reported to utilize BSN to harvest clean energy. In this review, we summarize recent progress in the BSN for power harvesting from four parts of brief introduction of BSN, biological prototypes for power harvesting, BSN-based energy conversion, and conclusion and outlook. Overall, by learning from nature, exploiting new avenues and improving the performance of BSN, a number of exciting developments in the near future may be anticipated.

References

1

Rolison, D. R.; Long, J. W.; Lytle, J. C.; Fischer, A. E.; Rhodes, C. P.; McEvoy, T. M.; Bourga, M. E.; Lubers, A. M. Multifunctional 3D nanoarchitectures for energy storage and conversion. Chem. Soc. Rev. 2009, 38, 226-252.

2

Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366-377.

3

Logan, B. E.; Rabaey, K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 2012, 337, 686-690.

4

Chen, J.; Cheng, F. Y. Combination of lightweight elements and nanostructured materials for batteries. Acc. Chem. Res. 2009, 42, 713-723.

5

Zhang, Q. F.; Uchaker, E.; Candelaria, S. L.; Cao, G. Z. Nanomaterials for energy conversion and storage. Chem. Soc. Rev. 2013, 42, 3127-3171.

6

Andrieu-Brunsen, A.; Micoureau, S.; Tagliazucchi, M.; Szleifer, I.; Azzaroni, O.; Soler-Illia, G. J. A. A. Mesoporous hybrid thin film membranes with PMETAC@silica architectures: Controlling ionic gating through the tuning of polyelectrolyte density. Chem. Mater. 2015, 27, 808-821.

7

Hou, X.; Liu, Y. J.; Dong, H.; Yang, F.; Li, L.; Jiang, L. A pH-gating ionic transport nanodevice: A symmetric chemical modification of single nanochannels. Adv. Mater. 2010, 22, 2440-2443.

8

Zhou, Y. H.; Guo, W.; Cheng, J. S.; Liu, Y.; Li, J. H.; Jiang, L. High-temperature gating of solid-state nanopores with thermo-responsive macromolecular nanoactuators in ionic liquids. Adv. Mater. 2012, 24, 962-967.

9

Yameen, B.; Ali, M.; Neumann, R.; Ensinger, W.; Knoll, W.; Azzaroni, O. Ionic transport through single solid-state nanopores controlled with thermally nanoactuated macromolecular gates. Small 2009, 5, 1287-1291.

10

Xiao, K.; Xie, G. H.; Li, P.; Liu, Q.; Hou, G. L.; Zhang, Z.; Ma, J.; Tian, Y.; Wen, L. P.; Jiang, L. A biomimetic multi- stimuli-response ionic gate using a hydroxypyrene derivation- functionalized asymmetric single nanochannel. Adv. Mater. 2014, 26, 6560-6565.

11

Vlassiouk, I.; Park, C. D.; Vail, S. A.; Gust, D.; Smirnov, S. Control of nanopore wetting by a photochromic spiropyran: A light-controlled valve and electrical switch. Nano. Lett. 2006, 6, 1013-1017.

12

Liu, Q.; Xiao, K.; Wen, L.; Dong, Y.; Xie, G.; Zhang, Z.; Bo, Z.; Jiang, L. A fluoride-driven ionic gate based on a 4-aminophenylboronic acid-functionalized asymmetric single nano channel. ACS Nano 2014, 8, 12292-12299.

13

Xie, G.; Xiao, K.; Zhang, Z.; Kong, X. -Y.; Liu, Q.; Li, P.; Wen, L.; Jiang, L. A bioinspired switchable and tunable carbonate-activated nanofluidic diode based on a single nanochannel. Angew. Chem., Int. Ed. 2015, 54, 13664-13668.

14

Ali, M.; Schiedt, B.; Neumann, R.; Ensinger, W. Biosensing with functionalized single asymmetric polymer nanochannels. Macromol. Biosci. 2010, 10, 28-32.

15

Xie, G. H.; Tian, W.; Wen, L. P.; Xiao, K.; Zhang, Z.; Liu, Q.; Hou, G. L.; Li, P.; Tian, Y.; Jiang, L. Chiral recognition of L-tryptophan with beta-cyclodextrin-modified biomimetic single nanochannel. Chem. Commun. 2015, 51, 3135-3138.

16

Hou, X.; Guo, W.; Jiang, L. Biomimetic smart nanopores and nanochannels. Chem. Soc. Rev. 2011, 40, 2385-2401.

17

Wen, L. P.; Tian, Y.; Ma, J.; Zhai, J.; Jiang, L. Construction of biomimetic smart nanochannels with polymer membranes and application in energy conversion systems. Phys. Chem. Chem. Phys. 2012, 14, 4027-4042.

18

Howorka, S.; Siwy, Z. S. Nanopore analytics: Sensing of single molecules. Chem. Soc. Rev. 2009, 38, 2360-2384.

19

Venkatesan, B. M.; Bashir, R. Nanopore sensors for nucleic acid analysis. Nat. Nanotechnol. 2011, 6, 615-624.

20

Wen, L.; Jiang, L. Construction of biomimetic smart nanochannels for confined water. Natl. Sci. Rev. 2014, 1, 144-156.

21

Martin, C. R.; Siwy, Z. S. Learning nature's way: Biosensing with synthetic nanopores. Science 2007, 317, 331-332.

22

Siwy, Z. S.; Howorka, S. Engineered voltage-responsive nanopores. Chem. Soc. Rev. 2010, 39, 1115-1132.

23

Dekker, C. Solid-state nanopores. Nat. Nanotechnol. 2007, 2, 209-215.

24

Kühlbrandt, W. Bacteriorhodopsin—The movie. Nature 2000, 406, 569-570.

25

Jin, Y. D.; Honig, T.; Ron, I.; Friedman, N.; Sheves, M.; Cahen, D. Bacteriorhodopsin as an electronic conduction medium for biomolecular electronics. Chem. Soc. Rev. 2008, 37, 2422-2432.

26

Marx, D. Proton transfer 200 years after von grotthuss: Insights from ab initio simulations. Chemphyschem 2006, 7, 1848-1870.

27

Mohammed, O. F.; Pines, D.; Dreyer, J.; Pines, E.; Nibbering, E. T. J. Sequential proton transfer through water bridges in acid-base reactions. Science 2005, 310, 83-86.

28

Frigaard, N. U.; Martinez, A.; Mincer, T. J.; DeLong, E. F. Proteorhodopsin lateral gene transfer between marine planktonic bacteria and archaea. Nature 2006, 439, 847-850.

29

Béjà, O.; Aravind, L.; Koonin, E. V.; Suzuki, M. T.; Hadd, A.; Nguyen, L. P.; Jovanovich, S. B.; Gates, C. M.; Feldman, R. A.; Spudich, J. L. et al. Bacterial rhodopsin: Evidence for a new type of phototrophy in the sea. Science 2000, 289, 1902-1906.

30

Altamirano, M. Electrical properties of the innervated membrane of the electroplax of electric eel. J. Cell. Compar. Physiol. 1955, 46, 249-277.

31

Thornhill, W. B.; Watanabe, I.; Sutachan, J. J.; Wu, M. B.; Wu, X.; Zhu, J.; Recio-Pinto, E. Molecular cloning and expression of a Kv1.1-like potassium channel from the electric organ of electrophorus electricus. J. Membrane. Biol. 2003, 196, 1-8.

32

Xu, J.; Lavan, D. A. Designing artificial cells to harness the biological ion concentration gradient. Nat. Nanotechnol. 2008, 3, 666-670.

33

Rosenberg, R. L.; Tomiko, S. A.; Agnew, W. S. Single- channel properties of the reconstituted voltage-regulated Na channel isolated from the electroplax of electrophorus electricus. Proc. Natl. Acad. Sci. USA 1984, 81, 5594-5598.

34

Tóth, B. I.; Oláh, A.; Szöellősi, A. G.; Bíró, T. TRP channels in the skin. Brit. J. Pharmacol. 2014, 171, 2568-2581.

35

Lumpkin, E. A.; Caterina, M. J. Mechanisms of sensory transduction in the skin. Nature 2007, 445, 858-865.

36

Talavera, K.; Nilius, B.; Voets, T. Neuronal TRP channels: Thermometers, pathfinders and life-savers. Trends Neurosci. 2008, 31, 287-295.

37

Sokolov, A. N.; Tee, B. C. K.; Bettinger, C. J.; Tok, J. B. H.; Bao, Z. Chemical and engineering approaches to enable organic field-effect transistors for electronic skin applications. Acc. Chem. Res. 2012, 45, 361-371.

38

Chou, H. H.; Nguyen, A.; Chortos, A.; To, J. W. F.; Lu, C.; Mei, J.; Kurosawa, T.; Bae, W. G.; Tok, J. B. H.; Bao, Z. A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nat. Commun. 2015, 6, 8011.

39

Tee, B. C. K.; Chortos, A.; Berndt, A.; Nguyen, A. K.; Tom, A.; McGuire, A.; Lin, Z. C.; Tien, K.; Bae, W. G.; Wang, H. et al. A skin-inspired organic digital mechanoreceptor. Science 2015, 350, 313-316.

40

Robertson, B.; Lukashev, E. P. Rapid pH change due to bacteriorhodopsin measured with a tin-oxide electrode. Biophys. J. 1995, 68, 1507-1517.

41

Miyasaka, T.; Atake, T.; Watanabe, T. Generation of photoinduced steady current by purple membrane Langmuir- Blodgett films at electrode-electrolyte interface. Chem. Lett. 2003, 32, 144-145.

42

Miyasaka, T.; Koyama, K. Generation of faradaic photocurrents at the bacteriorhodopsin film electrodeposited on a platinum electrode. Electrochemistry 2000, 68, 865-868.

43

Saga, Y.; Watanabe, T.; Koyama, K.; Miyasaka, T. Mechanism of photocurrent generation from bacteriorhodopsin on gold electrodes. J. Phys. Chem. B 1999, 103, 234-238.

44

Horn, C.; Steinem, C. Photocurrents generated by bacteriorhodopsin adsorbed on nano-black lipid membranes. Biophys. J. 2005, 89, 1046-1054.

45

Rao, S. Y.; Si, K. J.; Yap, L. W.; Xiang, Y.; Cheng, W. L. Free-standing bilayered nanoparticle superlattice nanosheets with asymmetric ionic transport behaviors. ACS Nano 2015, 9, 11218-11224.

46

Guo, Z. B.; Liang, D. W.; Rao, S. Y.; Xiang, Y. Heterogeneous bacteriorhodopsin/gold nanoparticle stacks as a photovoltaic system. Nano Energy 2015, 11, 654-661.

47

Rao, S. Y.; Guo, Z. B.; Liang, D. W.; Chen, D. L.; Li, Y.; Xiang, Y. 3D proton transfer augments bio-photocurrent generation. Adv. Mater. 2015, 27, 2668-2673.

48

van der Heyden, F. H. J.; Stein, D.; Dekker, C. Streaming currents in a single nanofluidic channel. Phys. Rev. Lett. 2005, 95, 116104.

49

van der Heyden, F. H. J.; Bonthuis, D. J.; Stein, D.; Meyer, C.; Dekker, C. Electrokinetic energy conversion efficiency in nanofluidic channels. Nano. Lett. 2006, 6, 2232-2237.

50

van der Heyden, F. H.; Bonthuis, D. J.; Stein, D.; Meyer, C.; Dekker, C. Power generation by pressure-driven transport of ions in nanofluidic channels. Nano. Lett. 2007, 7, 1022-1025.

51

Guo, W.; Cheng, C.; Wu, Y. Z.; Jiang, Y.; Gao, J.; Li, D.; Jiang, L. Bio-inspired two-dimensional nanofluidic generators based on a layered graphene hydrogel membrane. Adv. Mater. 2013, 25, 6064-6068.

52

Guo, W.; Jiang, L. Two-dimensional ion channel based soft- matter piezoelectricity. Sci. China Mater. 2014, 57, 2-6.

53

Zhang, L.; Chen, X. D. Nanofluidics for giant power harvesting. Angew. Chem., Int. Ed. 2013, 52, 7640-7641.

54

Ramon, G. Z.; Feinberg, B. J.; Hoek, E. M. V. Membrane- based production of salinity-gradient power. Energ. Environ. Sci. 2011, 4, 4423-4434.

55

Sparreboom, W.; van den Berg, A.; Eijkel, J. C. T. Principles and applications of nanofluidic transport. Nat. Nanotechnol. 2009, 4, 713-720.

56

Weinstein, J. N.; Leitz, F. B. Electric power from differences in salinity: The dialytic battery. Science 1976, 191, 557-559.

57

Siwy, Z. S.; Kosińska, I. D.; Fuliński, A.; Martin, C. R. Asymmetric diffusion through synthetic nanopores. Phys. Rev. Lett. 2005, 94, 048102.

58

Guo, W.; Cao, L. X.; Xia, J. C.; Nie, F. Q.; Ma, W.; Xue, J. M.; Song, Y. L.; Zhu, D. B.; Wang, Y. G.; Jiang, L. Energy harvesting with single-ion-selective nanopores: A concentration-gradient-driven nanofluidic power source. Adv. Funct. Mater. 2010, 20, 1339-1344.

59

Xie, Y. B.; Wang, X. W.; Xue, J. M.; Jin, K.; Chen, L.; Wang, Y. G. Electric energy generation in single track-etched nanopores. Appl. Phys. Lett. 2008, 93, 163116.

60

Ahualli, S.; Jiménez, M. L.; Fernández, M. M.; Iglesias, G.; Brogioli, D.; Delgado, Á. V. Polyelectrolyte-coated carbons used in the generation of blue energy from salinity differences. Phys. Chem. Chem. Phys. 2014, 16, 25241-25246.

61

Schoch, R. B.; Han, J.; Renaud, P. Transport phenomena in nanofluidics. Rev. Mod. Phys. 2008, 80, 839-883.

62

Fan, R.; Huh, S.; Yan, R. X.; Arnold, J.; Yang, P. D. Gated proton transport in aligned mesoporous silica films. Nat. Mater. 2008, 7, 303-307.

63

Gao, J.; Guo, W.; Feng, D.; Wang, H. T.; Zhao, D. Y.; Jiang, L. High-performance ionic diode membrane for salinity gradient power generation. J. Am. Chem. Soc. 2014, 136, 12265-12272.

64

Zhang, Z.; Kong, X. Y.; Xiao, K.; Liu, Q.; Xie, G. H.; Li, P.; Ma, J.; Tian, Y.; Wen, L. P.; Jiang, L. Engineered asymmetric heterogeneous membrane: A concentration-gradient-driven energy harvesting device. J. Am. Chem. Soc. 2015, 137, 14765-14772.

65

Gust, D.; Moore, T. A.; Moore, A. L. Mimicking photosynthetic solar energy transduction. Acc. Chem. Res. 2001, 34, 40-48.

66

Xie, X. J.; Crespo, G. A.; Mistlberger, G.; Bakker, E. Photocurrent generation based on a light-driven proton pump in an artificial liquid membrane. Nat. Chem. 2014, 6, 202-207.

67

Xie, X. J.; Bakker, E. Creating electrochemical gradients by light: From bio-inspired concepts to photoelectric conversion. Phys. Chem. Chem. Phys. 2014, 16, 19781-19789.

68

Blankenship, R. E.; Tiede, D. M.; Barber, J.; Brudvig, G. W.; Fleming, G.; Ghirardi, M.; Gunner, M. R.; Junge, W.; Kramer, D. M.; Melis, A. et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 2011, 332, 805-809.

69

Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Hybrid nanorod- polymer solar cells. Science 2002, 295, 2425-2427.

70

Yella, A.; Lee, H. W.; Tsao, H. N.; Yi, C. Y.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W. G.; Yeh, C. Y.; Zakeeruddin, S. M.; Grätzel, M. Porphyrin-sensitized solar cells with cobalt (Ⅱ/Ⅲ)-based redox electrolyte exceed 12 percent efficiency. Science 2011, 334, 629-634.

71

Wen, L. P.; Hou, X.; Tian, Y.; Zhai, J.; Jiang, L. Bio-inspired photoelectric conversion based on smart-gating nanochannels. Adv. Funct. Mater. 2010, 20, 2636-2642.

72

Wen, L. P.; Tian, Y.; Guo, Y. L.; Ma, J.; Liu, W. D.; Jiang, L. Conversion of light to electricity by photoinduced reversible pH changes and biomimetic nanofluidic channels. Adv. Funct. Mater. 2013, 23, 2887-2893.

73

Meng, Z. Y.; Bao, H.; Wang, J. T.; Jiang, C. D.; Zhang, M. H.; Zhai, J.; Jiang, L. Artificial ion channels regulating light-induced ionic currents in photoelectrical conversion systems. Adv. Mater. 2014, 26, 2329-2334.

74

Zhang, Q. Q.; Liu, Z. Y.; Zhai, J. Photocurrent generation in a light-harvesting system with multifunctional artificial nanochannels. Chem. Commun. 2015, 51, 12286-12289.

75

Rao, S. Y.; Lu, S. F.; Guo, Z. B.; Li, Y.; Chen, D. L.; Xiang, Y. A light-powered bio-capacitor with nanochannel modulation. Adv. Mater. 2014, 26, 5846-5850.

76

Zhao, F.; Cheng, H. H.; Zhang, Z. P.; Jiang, L.; Qu, L. T. Direct power generation from a graphene oxide film under moisture. Adv. Mater. 2015, 27, 4351-4357.

77

Siria, A.; Poncharal, P.; Biance, A. L.; Fulcrand, R.; Blase, X.; Purcell, S. T.; Bocquet, L. Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature 2013, 494, 455-458.

78

Dai, L. M. Functionalization of graphene for efficient energy conversion and storage. Acc. Chem. Res. 2013, 46, 31-42.

79

Jain, T. R.; Rasera, B. C.; Guerrero, R. J. S.; Boutilier, M. S. H.; O'Hern, S. C.; Idrobo, J. C.; Karnik, R. Heterogeneous sub-continuum ionic transport in statistically isolated graphene nanopores. Nat. Nanotechnol. 2015, 10, 1053-1057.

80

Bonaccorso, F.; Colombo, L.; Yu, G.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 1246501.

81

Hu, C. G.; Song, L.; Zhang, Z. P.; Chen, N.; Feng, Z. H.; Qu, L. T. Tailored graphene systems for unconventional applications in energy conversion and storage devices. Energ. Environ. Sci. 2015, 8, 31-54.

Nano Research
Pages 59-71
Cite this article:
Xie G, Wen L, Jiang L. Biomimetic smart nanochannels for power harvesting. Nano Research, 2016, 9(1): 59-71. https://doi.org/10.1007/s12274-016-0993-1
Part of a topical collection:

1001

Views

46

Crossref

N/A

Web of Science

47

Scopus

1

CSCD

Altmetrics

Received: 30 November 2015
Revised: 24 December 2015
Accepted: 27 December 2015
Published: 22 January 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return