AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Uniformly dispersed FeOx atomic clusters by pulsed arc plasma deposition: An efficient electrocatalyst for improving the performance of Li–O2 battery

Xiangyi Luo1Jun Lu2( )Evan Sohm3Lu Ma4Tianpin Wu4Jianguo Wen5Dantong Qiu2YunKai Xu1Yang Ren4Dean J. Miller5Khalil Amine2
Material Sciences DivisionArgonne National LaboratoryArgonneIL60439USA
Chemical Sciences and Engineering DivisionArgonne National LaboratoryArgonneIL60439USA
ULVAC TechnologiesInc.MethuenMA01844USA
Advanced Photon SourceArgonne National LaboratoryArgonneIL60439USA
Center for Nanoscale MaterialsNanoscience and TechnologyArgonne National LaboratoryArgonneIL60439USA
Show Author Information

Graphical Abstract

Abstract

The present study explored a new method to improve the catalytic activity of non-precious metals, especially in electrochemical reactions. Highly ionized Fe plasma produced by arc discharge was uniformly deposited on a porous carbon substrate and formed atomic clusters on the carbon surface. The as-prepared FeOx/C material was tested as a cathode material in a rechargeable Li–O2 battery under different current rates. The results showed significant improvement in battery performance in terms of both cycle life and reaction rate. Furthermore, X-ray diffraction (XRD) and scanning electron microscopy (SEM) results showed that the as-prepared cathode material stabilized the cathode and reduced side reactions and that the current rate was a critical factor in the nucleation of the discharge products.

References

1

Abraham, K. M.; Jiang, Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 1996, 143, 1–5.

2

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. -M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

3

Bruce, P. G.; Hardwick, L. J.; Abraham, K. M. Lithium-air and lithium-sulfur batteries. MRS Bull. 2011, 36, 506–512.

4

Christensen, J.; Albertus, P.; Sanchez-Carrera, R. S.; Lohmann, T.; Kozinsky, B.; Liedtke, R.; Ahmed, J.; Kojic, A. A critical review of Li/air batteries. J. Electrochem. Soc. 2012, 159, R1–R30.

5

Lu, J.; Li, L.; Park, J. -B.; Sun, Y. -K.; Wu, F.; Amine, K. Aprotic and aqueous Li–O2 batteries. Chem. Rev. 2014, 114, 5611–5640.

6

Feng, L.; Li, K.; Chang, J.; Liu, C.; Xing, W. Nanostructured PtRu/C catalyst promoted by cop as an efficient and robust anode catalyst in direct methanol fuel cells. Nano Energy 2015, 15, 462–469.

7

Lei, Y.; Lu, J.; Luo, X.; Wu, T.; Du, P.; Zhang, X.; Ren, Y.; Wen, J.; Miller, D. J.; Miller, J. T. et al. Synthesis of porous carbon supported palladium nanoparticle catalysts by atomic layer deposition: Application for rechargeable lithium–O2 battery. Nano Lett. 2013, 13, 4182–4189.

8

Lu, J.; Lei, Y.; Lau, K. C.; Luo, X.; Du, P.; Wen, J.; Assary, R. S.; Das, U.; Miller, D. J.; Elam, J. W. et al. A nanostructured cathode architecture for low charge overpotential in lithiumoxygen batteries. Nat. Commun. 2013, 4, 2383.

9

Lu, Y. C.; Xu, Z.; Gasteiger, H. A.; Chen, S.; Hamad-Schifferli, K.; Shao-Horn, Y. Platinum-gold nanoparticles: A highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. J. Am. Chem. Soc. 2010, 132, 12170–12171.

10

Luo, X.; Piernavieja-Hermida, M.; Lu, J.; Wu, T.; Wen, J.; Ren, Y.; Miller, D.; Fang, Z. Z.; Lei, Y.; Amine, K. Pd nanoparticles on ZnO-passivated porous carbon by atomic layer deposition: An effective electrochemical catalyst for Li-O2 battery. Nanotechnology 2015, 26, 164003.

11

Aboagye, A.; Elbohy, H.; Kelkar, A. D.; Qiao, Q.; Zai, J.; Qian, X.; Zhang, L. Electrospun carbon nanofibers with surface-attached platinum nanoparticles as cost-effective and efficient counter electrode for dye-sensitized solar cells. Nano Energy 2015, 11, 550–556.

12

Gerloch, M.; Constable, E. C. An introduction to transitionmetal chemistry. In Transition metal chemistry. Durrant, M. C., Ed., Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2005; pp 1–19.

13

Agawa, Y.; Endo, S.; Matsuura, M.; Ishii, Y. Behaviors of metal nano-particles prepared by coaxial vacuum arc deposition. Adv. Mater. Res. 2010, 123–125, 1067–1070.

14

Yamamoto, Y.; Agawa, Y.; Hara, Y.; Amano, S.; Chayahara, A.; Horino, Y.; Fujii, K. Development of a coaxial type vacuum arc evaporation source. In Proceedings of the 1998 International Conference on Ion Implantation Technology Proceedings, Kyoto, 1999, pp 1148–1150.

15

Lefèvre, M.; Proietti, E.; Jaouen, F.; Dodelet, J. P. Ironbased catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 2009, 324, 71–74.

16

Lu, J.; Qin, Y.; Du, P.; Luo, X.; Wu, T.; Ren, Y.; Wen, J.; Miller, D. J.; Miller, J. T.; Amine, K. Synthesis and characterization of uniformly dispersed Fe3O4/Fe nanocomposite on porous carbon: Application for rechargeable Li-O2 batteries. RSC Adv. 2013, 3, 8276–8285.

17

Serov, A.; Artyushkova, K.; Niangar, E.; Wang, C.; Dale, N.; Jaouen, F.; Sougrati, M. T.; Jia, Q. Y.; Mukerjee, S.; Atanassov, P. Nano-structured non-platinum catalysts for automotive fuel cell application. Nano Energy 2015, 16, 293–300.

18

Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 2003, 301, 935–938.

19

Lu, J.; Cheng, L.; Lau, K. C.; Tyo, E.; Luo, X.; Wen, J.; Miller, D.; Assary, R. S.; Wang, H. -H.; Redfern, P. et al. Effect of the size-selective silver clusters on lithium peroxide morphology in lithium–oxygen batteries. Nat. Commun. 2014, 5, 4895.

20

Viswanathan, V.; Thygesen, K. S.; Hummelshøj, J. S.; Nørskov, J. K.; Girishkumar, G.; McCloskey, B. D.; Luntz, A. C. Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O2 batteries. J. Chem. Phys. 2011, 135, 214704.

21

Assary, R. S.; Lu, J.; Du, P.; Luo, X.; Zhang, X.; Ren, Y.; Curtiss, L. A.; Amine, K. The effect of oxygen crossover on the anode of a Li–O2 battery using an ether-based solvent: Insights from experimental and computational studies. ChemSusChem 2013, 6, 51–55.

22

Assary, R. S.; Lu, J.; Luo, X.; Zhang, X.; Ren, Y.; Wu, H.; Albishri, H. M.; El-Hady, D. A.; Al-Bogami, A. S.; Curtiss, L. A. et al. Molecular-level insights into the reactivity of siloxane-based electrolytes at a lithium-metal anode. ChemPhysChem 2014, 15, 2077–2083.

23

Freunberger, S. A.; Chen, Y. H.; Drewett, N. E.; Hardwick, L. J.; Bardé, F.; Bruce, P. G. The lithium-oxygen battery with ether-based electrolytes. Angew. Chem., Int. Ed. 2011, 50, 8609–8613.

24

Du, P.; Lu, J.; Lau, K. C.; Luo, X.; Bareño, J.; Zhang, X.; Ren, Y.; Zhang, Z.; Curtiss, L. A.; Sun, Y. K. et al. Compatibility of lithium salts with solvent of the non-aqueous electrolyte in Li-O2 batteries. Phys. Chem. Chem. Phys. 2013, 15, 5572–5581.

25

Zhang, Z. C.; Lu, J.; Assary, R. S.; Du, P.; Wang, H. H.; Sun, Y. K.; Qin, Y.; Lau, K. C.; Greeley, J.; Redfern, P. C. et al. Increased stability toward oxygen reduction products for lithium-air batteries with oligoether-functionalized silane electrolytes. J. Phys. Chem. C 2011, 115, 25535–25542.

Nano Research
Pages 1913-1920
Cite this article:
Luo X, Lu J, Sohm E, et al. Uniformly dispersed FeOx atomic clusters by pulsed arc plasma deposition: An efficient electrocatalyst for improving the performance of Li–O2 battery. Nano Research, 2016, 9(7): 1913-1920. https://doi.org/10.1007/s12274-016-1083-0

669

Views

15

Crossref

N/A

Web of Science

16

Scopus

3

CSCD

Altmetrics

Received: 27 December 2015
Revised: 21 March 2016
Accepted: 21 March 2016
Published: 24 May 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return