Exposed crystal facets directly affect the electrochemical/catalytic performance of MnO2 materials during their applications in supercapacitors, rechargeable batteries, and fuel cells. Currently, the facet-controlled synthesis of MnO2 is facing serious challenges due to the lack of an in-depth understanding of their surface evolution mechanisms. Here, combining aberration-corrected scanning transmission electron microscopy (STEM) and high-resolution TEM, we revealed a mutual energy-driven mechanism between beta-MnO2 nanowires and microstructures that dominated the evolution of the lateral facets in both structures. The evolution of the lateral surfaces followed the elimination of the {100} facets and increased the occupancy of {110} facets with the increase in hydrothermal retention time. Both self-growth and oriented attachment along their {100} facets were observed as two different ways to reduce the surface energies of the beta-MnO2 structures. High-density screw dislocations with the 1/2 <100> Burgers vector were generated consequently. The observed surface evolution phenomenon offers guidance for the facet-controlled growth of beta-MnO2 materials with high performances for its application in metal-air batteries, fuel cells, supercapacitors, etc.
- Article type
- Year
- Co-author
The discharge and charge mechanisms of rechargeable Li-O2 batteries have been the subject of extensive investigation recently. However, they are not fully understood yet. Here we report a systematic study of the morphological transition of Li2O2 from a single crystalline structure to a toroid like particle during the discharge–charge cycle, with the help of a theoretical model to explain the evolution of the Li2O2 at different stages of this process. The model suggests that the transition starts in the first monolayer of Li2O2, and is subsequently followed by a transition from particle growth to film growth if the applied current exceeds the exchange current for the oxygen reduction reaction in a Li-O2 cell. Furthermore, a sustainable mass transport of the diffusive active species (e.g., O2 and Li+) and evolution of the underlying interfaces are critical to dictate desirable oxygen reduction (discharge) and evolution (charge) reactions in the porous carbon electrode of a Li-O2 cell.
The present study explored a new method to improve the catalytic activity of non-precious metals, especially in electrochemical reactions. Highly ionized Fe plasma produced by arc discharge was uniformly deposited on a porous carbon substrate and formed atomic clusters on the carbon surface. The as-prepared FeOx/C material was tested as a cathode material in a rechargeable Li–O2 battery under different current rates. The results showed significant improvement in battery performance in terms of both cycle life and reaction rate. Furthermore, X-ray diffraction (XRD) and scanning electron microscopy (SEM) results showed that the as-prepared cathode material stabilized the cathode and reduced side reactions and that the current rate was a critical factor in the nucleation of the discharge products.
Novel SnO2–x/g-C3N4 heterojunction nanocomposites composed of reduced SnO2–x nanoparticles and exfoliated g-C3N4 nanosheets were prepared by a convenient one-step pyrolysis method. The structural, morphological, and optical properties of the as-prepared nanocomposites were characterized in detail, indicating that the aggregation of g-C3N4 nanosheets was prevented by small, well-dispersed SnO2–x nanoparticles. The ultraviolet–visible spectroscopy absorption bands of the nanocomposites were shifted to a longer wavelength region than those exhibited by pure SnO2 or g-C3N4. The charge transfer and recombination processes occurring in the nanocomposites were investigated using linear scan voltammetry and electrochemical impedance spectroscopy. Under 30-W visible-light-emitting diode irradiation, the heterojunction containing 27.4 wt.% SnO2–x exhibited the highest photocurrent density of 0.0468 mA·cm–2, which is 33.43 and 5.64 times larger than that of pure SnO2 and g-C3N4, respectively. The photocatalytic activity of the heterojunction material was investigated by degrading rhodamine B under irradiation from the same light source. Kinetic study revealed a promising degradation rate constant of 0.0226 min-1 for the heterojunction containing 27.4 wt.% SnO2–x, which is 32.28 and 5.79 times higher than that of pure SnO2 and g-C3N4, respectively. The enhanced photoelectrochemical and photocatalytic performances of the nanocomposite may be due to its appropriate SnO2–x content and the compact structure of the junction between the SnO2–x nanoparticles and the g-C3N4 nanosheets, which inhibits the recombination of photogenerated electrons and holes.