Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Novel SnO2–x/g-C3N4 heterojunction nanocomposites composed of reduced SnO2–x nanoparticles and exfoliated g-C3N4 nanosheets were prepared by a convenient one-step pyrolysis method. The structural, morphological, and optical properties of the as-prepared nanocomposites were characterized in detail, indicating that the aggregation of g-C3N4 nanosheets was prevented by small, well-dispersed SnO2–x nanoparticles. The ultraviolet–visible spectroscopy absorption bands of the nanocomposites were shifted to a longer wavelength region than those exhibited by pure SnO2 or g-C3N4. The charge transfer and recombination processes occurring in the nanocomposites were investigated using linear scan voltammetry and electrochemical impedance spectroscopy. Under 30-W visible-light-emitting diode irradiation, the heterojunction containing 27.4 wt.% SnO2–x exhibited the highest photocurrent density of 0.0468 mA·cm–2, which is 33.43 and 5.64 times larger than that of pure SnO2 and g-C3N4, respectively. The photocatalytic activity of the heterojunction material was investigated by degrading rhodamine B under irradiation from the same light source. Kinetic study revealed a promising degradation rate constant of 0.0226 min-1 for the heterojunction containing 27.4 wt.% SnO2–x, which is 32.28 and 5.79 times higher than that of pure SnO2 and g-C3N4, respectively. The enhanced photoelectrochemical and photocatalytic performances of the nanocomposite may be due to its appropriate SnO2–x content and the compact structure of the junction between the SnO2–x nanoparticles and the g-C3N4 nanosheets, which inhibits the recombination of photogenerated electrons and holes.
Tong, H.; Ouyang, S. X.; Bi, Y. P.; Umezawa, N.; Oshikiri, M.; Ye, J. H. Nano-photocatalytic materials: Possibilities and challenges. Adv. Mater. 2012, 24, 229–251.
Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76−80.
Yan, S. C.; Li, Z. S.; Zou, Z. G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 2009, 25, 10397–10401.
Ohno, T.; Murakami, N.; Koyanagi, T.; Yang, Y. Photocatalytic reduction of CO2 over a hybrid photocatalyst composed of WO3 and graphitic carbon nitride (g-C3N4) under visible light. J. CO2 Utilization 2014, 6, 17–25.
Zhu, J. J.; Xiao, P.; Li, H. L.; Carabineiro, S. A. C. Graphitic carbon nitride: Synthesis, properties, and applications in catalysis. ACS Appl. Mater. Interfaces 2014, 6, 16449–16465.
Yang, S. B.; Gong, Y. J.; Zhang, J. S.; Zhan, L.; Ma, L. L.; Fang, Z. Y.; Vajtai, R.; Wang, X. C.; Ajayan, P. M. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv. Mater. 2013, 25, 2452–2456.
Sridharan, K.; Jang, E.; Park, T. J. Novel visible light active graphitic C3N4–TiO2 composite photocatalyst: Synergistic synthesis, growth and photocatalytic treatment of hazardous pollutants. Appl. Catal. B: Environ. 2013, 142–143, 718–728.
Liu, W.; Wang, M. L.; Xu, C. X.; Chen, S. F. Facile synthesis of g-C3N4/ZnO composite with enhanced visible light photooxidation and photoreduction properties. Chem. Eng. J. 2012, 209, 386–393.
Yan, S. C.; Lv, S. B.; Li, Z. S.; Zou, Z. G. Organic–inorganic composite photocatalyst of g-C3N4 and TaON with improved visible light photocatalytic activities. Dalton Trans. 2010, 39, 1488–1491.
Zang, Y. P.; Li, L. P.; Li, X. G.; Lin, R.; Li, G. S. Synergistic collaboration of g-C3N4/SnO2 composites for enhanced visible-light photocatalytic activity. Chem. Eng. J. 2014, 246, 277–286.
Belhadi, A.; Boumaza, S.; Trari, M. Photoassisted hydrogen production under visible light over NiO/ZnO hetero-system. Appl. Energy 2011, 88, 4490–4495.
Huang, H.; Gong, H.; Chow, C. L.; Guo, J.; White, T. J.; Tse, M. S.; Tan, O. K. Low-temperature growth of SnO2 nanorod arrays and tunable n–p–n sensing response of a ZnO/SnO2 heterojunction for exclusive hydrogen sensors. Adv. Funct. Mater. 2011, 21, 2680–2686.
Wang, Y. J.; Tian, J. J.; Fei, C. B.; Lv, L. L.; Liu, X. G.; Zhao, Z. X.; Cao, G. Z. Microwave-assisted synthesis of SnO2 nanosheets photoanodes for dye-sensitized solar cells. J. Phys. Chem. C 2014, 118, 25931–25938.
Uddin, M. T.; Nicolas, Y.; Olivier, C.; Toupance, T.; Servant, L.; Muller, M. M.; Kleebe, H. J.; Ziegler, J.; Jaegermann, W. Nanostructured SnO2–ZnO heterojunction photocatalysts showing enhanced photocatalytic activity for the degradation of organic dyes. Inorg. Chem. 2012, 51, 7764–7773.
Yin, R.; Luo, Q. Z.; Wang, D. S.; Sun, H. T.; Li, Y. Y.; Li, X. Y.; An, J. SnO2/g-C3N4 photocatalyst with enhanced visible-light photocatalytic activity. J. Mater. Sci. 2014, 49, 6067–6073.
Li, Q.; He, Y.; Peng, R. F. One-step synthesis of SnO2 nanoparticles-loaded graphitic carbon nitride and their application in thermal decomposition of ammonium perchlorate. New J. Chem. 2015, 39, 8703–8707.
Anise, A.; Aziz, H. Y. A simple large-scale method for preparation of g-C3N4/SnO2 nanocomposite as visiblelight-driven photocatalyst for degradation of an organic pollutant. Mater. Express 2015, 5, 309–318.
Chen, X.; Zhou, B. H.; Yang, S. L.; Wu, H. S.; Wu, Y. X.; Wu, L. D.; Pan, J.; Xiong, X. In situ construction of an SnO2/g-C3N4 heterojunction for enhanced visible-light photocatalytic activity. RSC Adv. 2015, 5, 68953–68963.
Chen, L. Y.; Zhang, W. D. A simple strategy for the preparation of g-C3N4/SnO2 nanocomposite photocatalysts. Sci. Adv. Mater. 2014, 6, 1091–1098.
Li, G. S.; Lian, Z. C.; Li, X.; Xu, Y. Y.; Wang, W. C.; Zhang, D. Q.; Tian, F. H.; Li, H. X. Ionothermal synthesis of black Ti3+-doped single-crystal TiO2 as an active photocatalyst for pollutant degradation and H2 generation. J. Mater. Chem. A 2015, 3, 3748–3756.
Wang, J. P.; Wang, Z. Y.; Huang, B. B.; Ma, Y. D.; Liu, Y. Y.; Qin, X. Y.; Zhang, X. Y.; Dai, Y. Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Appl. Mater. Interfaces 2012, 4, 4024–4030.
Long, J. L.; Xue, W. W.; Xie, X. Q.; Gu, Q.; Zhou, Y. G.; Chi, Y. W.; Chen, W. K.; Ding, Z. X.; Wang, X. X. Sn2+ dopant induced visible-light activity of SnO2 nanoparticles for H2 production. Catal. Commun. 2011, 16, 215–219.
Fan, C. M.; Peng, Y.; Zhu, Q.; Lin, L.; Wang, R. X.; Xu, A. W. Synproportionation reaction for the fabrication of Sn2+ self-doped SnO2-x nanocrystals with tunable band structure and highly efficient visible light photocatalytic activity. J. Phys. Chem. C 2013, 117, 24157–24166.
He, Y. M.; Zhang, L. H.; Fan, M. H.; Wang, X. X.; Walbridge, M. L.; Nong, Q. Y.; Wu, Y.; Zhao, L. H. Z-scheme SnO2-x/g-C3N4 composite as an efficient photocatalyst for dye degradation and photocatalytic CO2 reduction. Solar Energy Mater. Solar Cells 2015, 137, 175–184.
He, Y. R.; Yan, F. F.; Yu, H. Q.; Yuan, S. J.; Tong, Z. H.; Sheng, G. P. Hydrogen production in a light-driven photoelectrochemical cell. Appl. Energy 2014, 113, 164–168.
Li, H.; Chen, J. Q.; Xia, Z. B.; Xing, J. H. Microwaveassisted preparation of self-doped TiO2 nanotube arrays for enhanced photoelectrochemical water splitting. J. Mater. Chem. A 2015, 3, 699–705.
Song, K. C.; Kang, Y. Preparation of high surface area tin oxide powders by a homogeneous precipitation method. Mater. Lett. 2000, 42, 283–289.
Wang, X. C.; Chen, X. F.; Thomas, A.; Fu, X. Z.; Antonietti, M. Metal-containing carbon nitride compounds: A new functional organic–metal hybrid material. Adv. Mater. 2009, 21, 1609–1612.
Cui, Y. J.; Zhang, J. S.; Zhang, G. G.; Huang, J. H.; Liu, P.; Antonietti, M.; Wang, X. C. Synthesis of bulk and nanoporous carbon nitride polymers from ammonium thiocyanate for photocatalytic hydrogen evolution. J. Mater. Chem. 2011, 21, 13032–13039.
Ghosh, M.; Pralong, V.; Wattiaux, A.; Sleight, A. W.; Subramanian, M. A. Tin (Ⅱ) doped anatase (TiO2) nanoparticles: A potential route to "greener" yellow pigments. Chem. —Asian J. 2009, 4, 881–885.
Sun, L. M.; Zhao, X.; Jia, C. J.; Zhou, Y. X.; Cheng, X. F.; Li, P.; Liu, L.; Fan, W. L. Enhanced visible-light photocatalytic activity of g-C3N4–ZnWO4 by fabricating a heterojunction: Investigation based on experimental and theoretical studies. J. Mater. Chem. 2012, 22, 23428–23438.
Li, B. X.; Xie, Y.; Jing, M.; Rong, G. X.; Tang, Y. C.; Zhang, G. Z. In2O3 hollow microspheres: Synthesis from designed In(OH)3 precursors and applications in gas sensors and photocatalysis. Langmuir 2006, 22, 9380–9385.
Gan, J. Y.; Lu, X. H.; Wu, J. H.; Xie, S. L.; Zhai, T.; Yu, M. H.; Zhang, Z. S.; Mao, Y. C.; Wang, S. C. I.; Shen, Y. et al. Oxygen vacancies promoting photoelectrochemical performance of In2O3 nanocubes. Sci. Rep. 2013, 3, 1021.
Zhao, Z.; Zhang, X. Y.; Zhang, G. Q.; Liu, Z. Y.; Qu, D.; Miao, X.; Feng, P. Y.; Sun, Z. C. Effect of defects on photocatalytic activity of rutile TiO2 nanorods. Nano Res. 2015, 8, 4061–4071.
Li, T. T.; Zhao, L. H.; He, Y. M.; Cai, J.; Luo, M. F.; Lin, J. J. Synthesis of g-C3N4/SmVO4 composite photocatalyst with improved visible light photocatalytic activities in RhB degradation. Appl. Catal. B: Environ. 2013, 129, 255–263.
Li, K.; Gao, S. M.; Wang, Q. Y.; Xu, H.; Wang, Z. Y.; Huang, B. B.; Dai, Y.; Lu, J. In-situ-reduced synthesis of Ti3+ self-doped TiO2/g-C3N4 heterojunctions with high photocatalytic performance under LED light irradiation. ACS Appl. Mater. Interfaces 2015, 7, 9023–9030.
Wang, H. K.; Dou, K. P.; Teoh, W. Y.; Zhan, Y. W.; Hung, T. F.; Zhang, F. H.; Xu, J. Q.; Zhang, R. Q.; Rogach, A. L. Engineering of facets, band structure, and gas-sensing properties of hierarchical Sn2+-doped SnO2 nanostructures. Adv. Funct. Mater. 2013, 23, 4847–4853.
Li, N.; Du, K.; Liu, G.; Xie, Y. P.; Zhou, G. M.; Zhu, J.; Li, F.; Cheng, H. M. Effects of oxygen vacancies on the electrochemical performance of tin oxide. J. Mater. Chem. A 2013, 1, 1536–1539.
Han, Q.; Wang, B.; Zhao, Y.; Hu, C. G.; Qu, L. T. A graphitic-C3N4 "seaweed" architecture for enhanced hydrogen evolution. Angew. Chem., Int. Ed. 2015, 54, 11433–11437.
Niu, P.; Zhang, L. L.; Liu, G.; Cheng, H. M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 2012, 22, 4763–4770.
Li, X. F.; Zhang, J.; Shen, L. H.; Ma, Y. M.; Lei, W. W.; Cui, Q. L.; Zou, G. T. Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine. Appl. Phys. A 2009, 94, 387–392.
Xiang, Q. J.; Yu, J. G.; Jaroniec, M. Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites. J. Phys. Chem. C 2011, 115, 7355–7363.
Yu, J. G.; Wang, B. Effect of calcination temperature on morphology and photoelectrochemical properties of anodized titanium dioxide nanotube arrays. Appl. Catal. B: Environ. 2010, 94, 295–302.
Bai, X. J.; Wang, L.; Zong, R. L.; Lv, Y. H.; Sun, Y. Q.; Zhu, Y. F. Performance enhancement of ZnO photocatalyst via synergic effect of surface oxygen defect and graphene hybridization. Langmuir 2013, 29, 3097–3105.
Hou, Y.; Wen, Z. H.; Cui, S. M.; Guo, X. R.; Chen, J. H. Constructing 2D porous graphitic C3N4 nanosheets/nitrogendoped graphene/layered MoS2 ternary nanojunction with enhanced photoelectrochemical activity. Adv. Mater. 2013, 25, 6291–6297.
Wei, Z.; Liu, Y. F.; Wang, J.; Zong, R. L.; Yao, W. Q.; Wang, J.; Zhu, Y. F. Controlled synthesis of a highly dispersed BiPO4 photocatalyst with surface oxygen vacancies. Nanoscale 2015, 7, 13943–13950.
Cheng, X. W.; Liu, H. L.; Chen, Q. H.; Li, J. J.; Wang, P. Enhanced photoelectrocatalytic performance for degradation of diclofenac and mechanism with TiO2 nano-particles decorated TiO2 nano-tubes arrays photoelectrode. Electrochim. Acta 2013, 108, 203–210.
Zhang, J. Y.; Wang, Y. H.; Jin, J.; Zhang, J.; Lin, Z.; Huang, F.; Yu, J. G. Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core/shell CdS/ g-C3N4 nanowires. ACS Appl. Mater. Interfaces 2013, 5, 10317–10324.
Wang, S. M.; Li, D. L.; Sun, C.; Yang, S. G.; Guan, Y.; He, H. Synthesis and characterization of g-C3N4/Ag3VO4 composites with significantly enhanced visible-light photocatalytic activity for triphenylmethane dye degradation. Appl. Catal. B: Environ. 2014, 144, 885–892.
Bai, Y.; Wang, P. Q.; Liu, J. Y.; Liu, X. J. Enhanced photocatalytic performance of direct Z-scheme BiOCl–g-C3N4 photocatalysts. RSC Adv. 2014, 4, 19456–19461.
He, Y. M.; Zhang, L. H.; Wang, X. X.; Wu, Y.; Lin, H. J.; Zhao, L. H.; Weng, W. Z.; Wan, H. L.; Fan, M. H. Enhanced photodegradation activity of methyl orange over Z-scheme type MoO3-g-C3N4 composite under visible light irradiation. RSC Adv. 2014, 4, 13610–13619.
Li, Z. H.; Xie, Z. P.; Zhang, Y. F.; Wu, L.; Wang, X. X.; Fu, X. Z. Wide band gap p-block metal oxyhydroxide InOOH: A new durable photocatalyst for benzene degradation. J. Phys. Chem. C 2007, 111, 18348–18352.