Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Two-dimensional (2D) crystals have a multitude of forms, including semi-metals, semiconductors, and insulators, which are ideal for assembling isolated 2D atomic materials to create van der Waals (vdW) heterostructures. Recently, artificially-stacked materials have been considered promising candidates for nanoelectronic and optoelectronic applications. In this study, we report the vertical integration of layered structures for the fabrication of prototype non-volatile memory devices. A semiconducting-tungsten-disulfide-channel-based memory device is created by sandwiching high-density-of-states multi-layered graphene as a carrier-confining layer between tunnel barriers of hexagonal boron nitride (hBN) and silicon dioxide. The results reveal that a memory window of up to 20 V is opened, leading to a high current ratio (> 103) between programming and erasing states. The proposed design combination produced layered materials that allow devices to attain perfect retention at 13% charge loss after 10 years, offering new possibilities for the integration of transparent, flexible electronic systems.
Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.
Ganatra, R.; Zhang, Q. Few-layer MoS2: A promising layered semiconductor. ACS Nano 2014, 8, 4074-4099.
Roy, K.; Padmanabhan, M.; Goswami, S.; Sai, T. P.; Ramalingam, G.; Raghavan, S.; Ghosh, A. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol. 2013, 8, 826-830.
Georgiou, T.; Jalil, R.; Belle, B. D.; Britnell, L.; Gorbachev, R. V.; Morozov, S. V.; Kim, Y. J.; Gholinia, A.; Haigh, S. J.; Makarovsky, O. et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 2013, 8, 100-103.
Mishchenko, A.; Tu, J. S.; Cao, Y.; Gorbachev, R. V.; Wallbank, J. R.; Greenaway, M. T.; Morozov, V. E.; Morozov, S. V.; Zhu, M. J.; Wong, S. L. et al. Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures. Nat. Nanotechnol. 2014, 9, 808-813.
Li, D.; Wang, X. J.; Zhang, Q. C.; Zou, L. P.; Xu, X. F.; Zhang, Z. X. Nonvolatile floating-gate memories based on stacked black phosphorus-boron nitride-MoS2 heterostructures. Adv. Funct. Mater. 2015, 25, 7360-7365.
Choi, M. S.; Lee, G. H.; Yu, Y. J.; Lee, D. Y.; Lee, S. H.; Kim, P.; Hone, J.; Yoo, W. J. Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices. Nat. Commun. 2013, 4, 1624.
Wang, X. M.; Xie, W. G.; Xu, J. B. Graphene based non-volatile memory devices. Adv. Mater. 2014, 26, 5496-5503.
Bertolazzi, S.; Krasnozhon, D.; Kis, A. Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 2013, 7, 3246-3252.
Zhang, E. Z.; Wang, W. Y.; Zhang, C.; Jin, Y. B.; Zhu, G. D.; Sun, Q. -Q.; Zhang, D. W.; Zhou, P.; Xiu, F. X. Tunable charge-trap memory based on few-layer MoS2. ACS Nano 2015, 9, 612-619.
Wang, J. L.; Zou, X. M.; Xiao, X. H.; Xu, L.; Wang, C. L.; Jiang, C. Z.; Ho, J. C.; Wang, T.; Li, J. C.; Liao, L. Floating gate memory-based monolayer MoS2 transistor with metal nanocrystals embedded in the gate dielectrics. Small 2015, 11, 208-213.
Lee, J.; Min, S. -W.; Lee, H. S.; Yi, Y. J.; Im, S. MoS2 nanosheet channel and guanine DNA-base charge injection layer for high performance memory transistors. J. Mater. Chem. C 2014, 2, 5411-5416.
Cao, W.; Kang, J. H.; Bertolazzi, S.; Kis, A.; Banerjee, K. Can 2D-nanocrystals extend the lifetime of floating-gate transistor based nonvolatile memory? IEEE T. Electron Dev. 2014, 61, 3456-3464.
Hong, A. J.; Song, E. B.; Yu, H. S.; Allen, M. J.; Kim, J.; Fowler, J. D.; Wassei, J. K.; Park, Y.; Wang, Y.; Zou, J. et al. Graphene flash memory. ACS Nano 2011, 5, 7812-7817.
Young, A. F.; Dean, C. R.; Meric, I.; Sorgenfrei, S.; Ren, H.; Watanabe, K.; Taniguchi, T.; Hone, J.; Shepard, K. L.; Kim, P. Electronic compressibility of layer-polarized bilayer graphene. Phys. Rev. B 2012, 85, 235458.
Lee, G. -H.; Yu, Y. -J.; Lee, C.; Dean, C.; Shepard, K. L.; Kim, P.; Hone, J. Electron tunneling through atomically flat and ultrathin hexagonal boron nitride. Appl. Phys. Lett. 2011, 99, 243114.
Osada, M.; Sasaki, T. Two-dimensional dielectric nanosheets: Novel nanoelectronics from nanocrystal building blocks. Adv. Mater. 2012, 24, 210-228.
Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722-726.
Sik Hwang, W.; Remskar, M.; Yan, R. S.; Protasenko, V.; Tahy, K.; Doo Chae, S.; Zhao, P.; Konar, A.; Xing, H.; Seabaugh, A. et al. Transistors with chemically synthesized layered semiconductor WS2 exhibiting 105 room temperature modulation and ambipolar behavior. Appl. Phys. Lett. 2012, 101, 013107.
Braga, D.; Gutiérrez Lezama, I.; Berger, H.; Morpurgo, A. F. Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors. Nano Lett. 2012, 12, 5218-5223.
Kuc, A.; Zibouche, N.; Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B 2011, 83, 245213.
Huo, N. J.; Kang, J.; Wei, Z. M.; Li, S. -S.; Li, J. B.; Wei, S. -H. Novel and enhanced optoelectronic performances of multilayer MoS2-WS2 heterostructure transistors. Adv. Funct. Mater. 2014, 24, 7025-7031.
Liu, L. T.; Bala Kumar, S.; Ouyang, Y. J.; Guo, J. Performance limits of monolayer transition metal dichalcogenide transistors. IEEE T. Electron Dev. 2011, 58, 3042-3047.
Brainard, W. A. The Thermal Stability and Friction of the Disulfides, Diselenides, and Ditellurides of Molybdenum and Tungsten in Vacuum (10-9 to 10-6 Torr). NASA, Washington, 1969.
Ballif, C.; Regula, M.; Schmid, P. E.; Remškar, M.; Sanjinés, R.; Lévy, F. Preparation and characterization of highly oriented, photoconducting WS2 thin films. Appl. Phys. A 1996, 62, 543-546.
Zhu, W. J.; Perebeinos, V.; Freitag, M.; Avouris, P. Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene. Phys. Rev. B 2009, 80, 235402.
Kumar, J.; Kuroda, M. A.; Bellus, M. Z.; Han, S. -J.; Chiu, H. -Y. Full-range electrical characteristics of WS2 transistors. Appl. Phys. Lett. 2015, 106, 123508.
Hwan Lee, S.; Lee, D.; Sik Hwang, W.; Hwang, E.; Jena, D.; Jong Yoo, W. High-performance photocurrent generation from two-dimensional WS2 field-effect transistors. Appl. Phys. Lett. 2014, 104, 193113.
Qiu, D. R.; Kim, E. K. Electrically tunable and negative Schottky barriers in multi-layered graphene/MoS2 heterostructured transistors. Sci. Rep. 2015, 5, 13743.
Late, D. J.; Liu, B.; Matte, H. S. S. R.; Dravid, V. P.; Rao, C. N. R. Hysteresis in single-layer MoS2 field effect transistors. ACS Nano 2012, 6, 5635-5641.
Chen, M. K.; Nam, H.; Wi, S.; Priessnitz, G.; Gunawan, I. M.; Liang, X. G. Multibit data storage states formed in plasma-treated MoS2 transistors. ACS Nano 2014, 8, 4023-4032.
Withers, F.; Bointon, T. H.; Hudson, D. C.; Craciun, M. F.; Russo, S. Electron transport of WS2 transistors in a hexagonal boron nitride dielectric environment. Sci. Rep. 2014, 4, 4967.
Iqbal, M. W.; Iqbal, M. Z.; Khan, M. F.; Shehzad, M. A.; Seo, Y.; Park, J. H.; Hwang, C.; Eom, J. High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films. Sci. Rep. 2015, 5, 10699.
Ovchinnikov, D.; Allain, A.; Huang, Y. -S.; Dumcenco, D.; Kis, A. Electrical transport properties of single-layer WS2. ACS Nano 2014, 8, 8174-8181.
Brewer, J.; Gill, M. Nonvolatile Memory Technologies with Emphasis on Flash; Wiley-IEEE Press: Piscataway, NJ, 2008.
Yan, R. S.; Zhang, Q.; Li, W.; Calizo, I.; Shen, T.; Richter, C. A.; Hight-Walker, A. R.; Liang, X. L.; Seabaugh, A.; Jena, D. et al. Determination of graphene work function and graphene-insulator-semiconductor band alignment by internal photoemission spectroscopy. Appl. Phys. Lett. 2012, 101, 022105.
Powers, M. J.; Benjamin, M. C.; Porter, L. M.; Nemanich, R. J.; Davis, R. F.; Cuomo, J. J.; Doll, G. L.; Harris, S. J. Observation of a negative electron affinity for boron nitride. Appl. Phys. Lett. 1995, 67, 3912-3914.
Schroder, D. K. Semiconductor Material and Device Characterization, 3rd ed.; John Wiley & Sons: Hoboken, NJ, 2006.
Lenzlinger, M.; Snow, E. H. Fowler-nordheim tunneling into thermally grown SiO2. J. Appl. Phys. 1969, 40, 278-283.
Han, S. -T.; Zhou, Y.; Roy, V. A. L. Towards the development of flexible non-volatile memories. Adv. Mater. 2013, 25, 5425-5449.
Xu, Y. -N.; Ching, W. Y. Calculation of ground-state and optical properties of boron nitrides in the hexagonal, cubic, and wurtzite structures. Phys. Rev. B 1991, 44, 7787-7798.
Jung, J.; Raoux, A.; Qiao, Z. H.; MacDonald, A. H. Ab initio theory of moiré superlattice bands in layered two-dimensional materials. Phys. Rev. B 2014, 89, 205414.
Kharche, N.; Nayak, S. K. Quasiparticle band gap engineering of graphene and graphone on hexagonal boron nitride substrate. Nano Lett. 2011, 11, 5274-5278.
Sze, S. M.; Ng, K. K. Physics of Semiconductor Devices, 3rd ed.; John Wiley & Sons: New Jersey, 2006.
Qiu, D. R.; Lee, D. U.; Park, C. S.; Lee, K. S.; Kim, E. K. Transport properties of unrestricted carriers in bridge-channel MoS2 field-effect transistors. Nanoscale 2015, 7, 17556-17562.