AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Toward negligible charge loss in charge injection memories based on vertically integrated 2D heterostructures

Dongri Qiu1Dong Uk Lee2Kyoung Su Lee1Sang Woo Pak1Eun Kyu Kim1( )
Quantum-Function Research Laboratory and Department of PhysicsHanyang UniversitySeoul04763Republic of Korea
NAND Development DivisionNAND Product Engineering Group, SK HynixIcheon17336Republic of Korea
Show Author Information

Graphical Abstract

Abstract

Two-dimensional (2D) crystals have a multitude of forms, including semi-metals, semiconductors, and insulators, which are ideal for assembling isolated 2D atomic materials to create van der Waals (vdW) heterostructures. Recently, artificially-stacked materials have been considered promising candidates for nanoelectronic and optoelectronic applications. In this study, we report the vertical integration of layered structures for the fabrication of prototype non-volatile memory devices. A semiconducting-tungsten-disulfide-channel-based memory device is created by sandwiching high-density-of-states multi-layered graphene as a carrier-confining layer between tunnel barriers of hexagonal boron nitride (hBN) and silicon dioxide. The results reveal that a memory window of up to 20 V is opened, leading to a high current ratio (> 103) between programming and erasing states. The proposed design combination produced layered materials that allow devices to attain perfect retention at 13% charge loss after 10 years, offering new possibilities for the integration of transparent, flexible electronic systems.

Electronic Supplementary Material

Download File(s)
nr-9-8-2319_ESM.pdf (2.9 MB)

References

1

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.

2

Ganatra, R.; Zhang, Q. Few-layer MoS2: A promising layered semiconductor. ACS Nano 2014, 8, 4074-4099.

3

Roy, K.; Padmanabhan, M.; Goswami, S.; Sai, T. P.; Ramalingam, G.; Raghavan, S.; Ghosh, A. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol. 2013, 8, 826-830.

4

Georgiou, T.; Jalil, R.; Belle, B. D.; Britnell, L.; Gorbachev, R. V.; Morozov, S. V.; Kim, Y. J.; Gholinia, A.; Haigh, S. J.; Makarovsky, O. et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 2013, 8, 100-103.

5

Mishchenko, A.; Tu, J. S.; Cao, Y.; Gorbachev, R. V.; Wallbank, J. R.; Greenaway, M. T.; Morozov, V. E.; Morozov, S. V.; Zhu, M. J.; Wong, S. L. et al. Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures. Nat. Nanotechnol. 2014, 9, 808-813.

6

Li, D.; Wang, X. J.; Zhang, Q. C.; Zou, L. P.; Xu, X. F.; Zhang, Z. X. Nonvolatile floating-gate memories based on stacked black phosphorus-boron nitride-MoS2 heterostructures. Adv. Funct. Mater. 2015, 25, 7360-7365.

7

Choi, M. S.; Lee, G. H.; Yu, Y. J.; Lee, D. Y.; Lee, S. H.; Kim, P.; Hone, J.; Yoo, W. J. Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices. Nat. Commun. 2013, 4, 1624.

8

Wang, X. M.; Xie, W. G.; Xu, J. B. Graphene based non-volatile memory devices. Adv. Mater. 2014, 26, 5496-5503.

9

Bertolazzi, S.; Krasnozhon, D.; Kis, A. Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 2013, 7, 3246-3252.

10

Zhang, E. Z.; Wang, W. Y.; Zhang, C.; Jin, Y. B.; Zhu, G. D.; Sun, Q. -Q.; Zhang, D. W.; Zhou, P.; Xiu, F. X. Tunable charge-trap memory based on few-layer MoS2. ACS Nano 2015, 9, 612-619.

11

Wang, J. L.; Zou, X. M.; Xiao, X. H.; Xu, L.; Wang, C. L.; Jiang, C. Z.; Ho, J. C.; Wang, T.; Li, J. C.; Liao, L. Floating gate memory-based monolayer MoS2 transistor with metal nanocrystals embedded in the gate dielectrics. Small 2015, 11, 208-213.

12

Lee, J.; Min, S. -W.; Lee, H. S.; Yi, Y. J.; Im, S. MoS2 nanosheet channel and guanine DNA-base charge injection layer for high performance memory transistors. J. Mater. Chem. C 2014, 2, 5411-5416.

13

Cao, W.; Kang, J. H.; Bertolazzi, S.; Kis, A.; Banerjee, K. Can 2D-nanocrystals extend the lifetime of floating-gate transistor based nonvolatile memory? IEEE T. Electron Dev. 2014, 61, 3456-3464.

14

Hong, A. J.; Song, E. B.; Yu, H. S.; Allen, M. J.; Kim, J.; Fowler, J. D.; Wassei, J. K.; Park, Y.; Wang, Y.; Zou, J. et al. Graphene flash memory. ACS Nano 2011, 5, 7812-7817.

15

Young, A. F.; Dean, C. R.; Meric, I.; Sorgenfrei, S.; Ren, H.; Watanabe, K.; Taniguchi, T.; Hone, J.; Shepard, K. L.; Kim, P. Electronic compressibility of layer-polarized bilayer graphene. Phys. Rev. B 2012, 85, 235458.

16

Lee, G. -H.; Yu, Y. -J.; Lee, C.; Dean, C.; Shepard, K. L.; Kim, P.; Hone, J. Electron tunneling through atomically flat and ultrathin hexagonal boron nitride. Appl. Phys. Lett. 2011, 99, 243114.

17

Osada, M.; Sasaki, T. Two-dimensional dielectric nanosheets: Novel nanoelectronics from nanocrystal building blocks. Adv. Mater. 2012, 24, 210-228.

18

Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722-726.

19

Sik Hwang, W.; Remskar, M.; Yan, R. S.; Protasenko, V.; Tahy, K.; Doo Chae, S.; Zhao, P.; Konar, A.; Xing, H.; Seabaugh, A. et al. Transistors with chemically synthesized layered semiconductor WS2 exhibiting 105 room temperature modulation and ambipolar behavior. Appl. Phys. Lett. 2012, 101, 013107.

20

Braga, D.; Gutiérrez Lezama, I.; Berger, H.; Morpurgo, A. F. Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors. Nano Lett. 2012, 12, 5218-5223.

21

Kuc, A.; Zibouche, N.; Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B 2011, 83, 245213.

22

Huo, N. J.; Kang, J.; Wei, Z. M.; Li, S. -S.; Li, J. B.; Wei, S. -H. Novel and enhanced optoelectronic performances of multilayer MoS2-WS2 heterostructure transistors. Adv. Funct. Mater. 2014, 24, 7025-7031.

23

Liu, L. T.; Bala Kumar, S.; Ouyang, Y. J.; Guo, J. Performance limits of monolayer transition metal dichalcogenide transistors. IEEE T. Electron Dev. 2011, 58, 3042-3047.

24

Brainard, W. A. The Thermal Stability and Friction of the Disulfides, Diselenides, and Ditellurides of Molybdenum and Tungsten in Vacuum (10-9 to 10-6 Torr). NASA, Washington, 1969.

25

Ballif, C.; Regula, M.; Schmid, P. E.; Remškar, M.; Sanjinés, R.; Lévy, F. Preparation and characterization of highly oriented, photoconducting WS2 thin films. Appl. Phys. A 1996, 62, 543-546.

26

Zhu, W. J.; Perebeinos, V.; Freitag, M.; Avouris, P. Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene. Phys. Rev. B 2009, 80, 235402.

27

Kumar, J.; Kuroda, M. A.; Bellus, M. Z.; Han, S. -J.; Chiu, H. -Y. Full-range electrical characteristics of WS2 transistors. Appl. Phys. Lett. 2015, 106, 123508.

28

Hwan Lee, S.; Lee, D.; Sik Hwang, W.; Hwang, E.; Jena, D.; Jong Yoo, W. High-performance photocurrent generation from two-dimensional WS2 field-effect transistors. Appl. Phys. Lett. 2014, 104, 193113.

29

Qiu, D. R.; Kim, E. K. Electrically tunable and negative Schottky barriers in multi-layered graphene/MoS2 heterostructured transistors. Sci. Rep. 2015, 5, 13743.

30

Late, D. J.; Liu, B.; Matte, H. S. S. R.; Dravid, V. P.; Rao, C. N. R. Hysteresis in single-layer MoS2 field effect transistors. ACS Nano 2012, 6, 5635-5641.

31

Chen, M. K.; Nam, H.; Wi, S.; Priessnitz, G.; Gunawan, I. M.; Liang, X. G. Multibit data storage states formed in plasma-treated MoS2 transistors. ACS Nano 2014, 8, 4023-4032.

32

Withers, F.; Bointon, T. H.; Hudson, D. C.; Craciun, M. F.; Russo, S. Electron transport of WS2 transistors in a hexagonal boron nitride dielectric environment. Sci. Rep. 2014, 4, 4967.

33

Iqbal, M. W.; Iqbal, M. Z.; Khan, M. F.; Shehzad, M. A.; Seo, Y.; Park, J. H.; Hwang, C.; Eom, J. High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films. Sci. Rep. 2015, 5, 10699.

34

Ovchinnikov, D.; Allain, A.; Huang, Y. -S.; Dumcenco, D.; Kis, A. Electrical transport properties of single-layer WS2. ACS Nano 2014, 8, 8174-8181.

35

Brewer, J.; Gill, M. Nonvolatile Memory Technologies with Emphasis on Flash; Wiley-IEEE Press: Piscataway, NJ, 2008.

36

Yan, R. S.; Zhang, Q.; Li, W.; Calizo, I.; Shen, T.; Richter, C. A.; Hight-Walker, A. R.; Liang, X. L.; Seabaugh, A.; Jena, D. et al. Determination of graphene work function and graphene-insulator-semiconductor band alignment by internal photoemission spectroscopy. Appl. Phys. Lett. 2012, 101, 022105.

37

Powers, M. J.; Benjamin, M. C.; Porter, L. M.; Nemanich, R. J.; Davis, R. F.; Cuomo, J. J.; Doll, G. L.; Harris, S. J. Observation of a negative electron affinity for boron nitride. Appl. Phys. Lett. 1995, 67, 3912-3914.

38

Schroder, D. K. Semiconductor Material and Device Characterization, 3rd ed.; John Wiley & Sons: Hoboken, NJ, 2006.

39

Lenzlinger, M.; Snow, E. H. Fowler-nordheim tunneling into thermally grown SiO2. J. Appl. Phys. 1969, 40, 278-283.

40

Han, S. -T.; Zhou, Y.; Roy, V. A. L. Towards the development of flexible non-volatile memories. Adv. Mater. 2013, 25, 5425-5449.

41

Xu, Y. -N.; Ching, W. Y. Calculation of ground-state and optical properties of boron nitrides in the hexagonal, cubic, and wurtzite structures. Phys. Rev. B 1991, 44, 7787-7798.

42

Jung, J.; Raoux, A.; Qiao, Z. H.; MacDonald, A. H. Ab initio theory of moiré superlattice bands in layered two-dimensional materials. Phys. Rev. B 2014, 89, 205414.

43

Kharche, N.; Nayak, S. K. Quasiparticle band gap engineering of graphene and graphone on hexagonal boron nitride substrate. Nano Lett. 2011, 11, 5274-5278.

44

Sze, S. M.; Ng, K. K. Physics of Semiconductor Devices, 3rd ed.; John Wiley & Sons: New Jersey, 2006.

45

Qiu, D. R.; Lee, D. U.; Park, C. S.; Lee, K. S.; Kim, E. K. Transport properties of unrestricted carriers in bridge-channel MoS2 field-effect transistors. Nanoscale 2015, 7, 17556-17562.

Nano Research
Pages 2319-2326
Cite this article:
Qiu D, Lee DU, Lee KS, et al. Toward negligible charge loss in charge injection memories based on vertically integrated 2D heterostructures. Nano Research, 2016, 9(8): 2319-2326. https://doi.org/10.1007/s12274-016-1118-6

700

Views

38

Crossref

N/A

Web of Science

38

Scopus

2

CSCD

Altmetrics

Received: 26 January 2016
Revised: 06 April 2016
Accepted: 21 April 2016
Published: 23 June 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return