AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Improved conductivity and capacitance of interdigital carbon microelectrodes through integration with carbon nanotubes for micro-supercapacitors

Yanjuan Yang1Liang He1( )Chunjuan Tang1,2Ping Hu1Xufeng Hong1Mengyu Yan1Yixiao Dong1Xiaocong Tian1Qiulong Wei1Liqiang Mai1 ( )
State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070China
Department of Mathematics and PhysicsLuoyang Institute of Science and TechnologyLuoyang471023China
Show Author Information

Graphical Abstract

Abstract

In the last decade, pyrolyzed-carbon-based composites have attracted much attention for their applications in micro-supercapacitors. Although various methods have been investigated to improve the performance of pyrolyzed carbons, such as conductivity, energy storage density and cycling performance, effective methods for the integration and mass-production of pyrolyzed-carbon-based composites on a large scale are lacking. Here, we report the development of an optimized photolithographic technique for the fine micropatterning of photoresist/chitosan-coated carbon nanotube (CHIT-CNT) composite. After subsequent pyrolysis, the fabricated carbon/CHIT-CNT microelectrode-based micro-supercapacitor has a high capacitance (6.09 mF·cm–2) and energy density (4.5 mWh·cm–3) at a scan rate of 10 mV·s–1. Additionally, the micro-supercapacitor has a remarkable long-term cyclability, with 99.9% capacitance retention after 10, 000 cyclic voltammetry cycles. This design and microfabrication process allow the application of carbon microelectromechanical system (C-MEMS)-based micro-supercapacitors due to their high potential for enhancing the mechanical and electrochemical performance of micro-supercapacitors.

Electronic Supplementary Material

Download File(s)
nr-9-8-2510_ESM.pdf (939.2 KB)

References

1

Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.

2

Zhang, L. L.; Zhao, X. S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 2009, 38, 2520–2531.

3

Lin, T. Q.; Chen, I. -W.; Liu, F. X.; Yang, C. Y.; Bi, H.; Xu, F. F.; Huang, F. Q. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 2015, 350, 1508–1513.

4

Jiang, H.; Lee, P. S.; Li, C. Z. 3D carbon based nanostructures for advanced supercapacitors. Energy Environ. Sci. 2013, 6, 41–53.

5

Wei, L.; Yushin, G. Nanostructured activated carbons from natural precursors for electrical double layer capacitors. Nano Energy 2012, 1, 552–565.

6

Wei, L.; Sevilla, M.; Fuertes, A. B.; Mokaya, R.; Yushin, G. Hydrothermal carbonization of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes. Adv. Energy Mater. 2011, 1, 356–361.

7

Tian, X. C.; Shi, M. Z.; Xu, X.; Yan, M. Y.; Xu, L.; Minhas-Khan, A.; Han, C. H.; He, L.; Mai, L. Q. Arbitrary shape engineerable spiral micropseudocapacitors with ultrahigh energy and power densities. Adv. Mater. 2015, 27, 7476–7482.

8

Liu, W. W.; Lu, C. X.; Wang, X. L.; Tay, R. Y.; Tay, B. K. High-performance microsupercapacitors based on two- dimensional graphene/manganese dioxide/silver nanowire ternary hybrid film. ACS Nano 2015, 9, 1528–1542.

9

Beidaghi, M.; Wang, C. L. Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance. Adv. Funct. Mater. 2012, 22, 4501–4510.

10

Wei, L.; Nitta, N.; Yushin, G. Lithographically patterned thin activated carbon films as a new technology platform for on-chip devices. ACS Nano 2013, 7, 6498–6506.

11

Jiang, W. C.; Zhai, S. L.; Qian, Q. H.; Yuan, Y.; Karahan, H. E.; Wei, L.; Goh, K.; Ng, A. K.; Wei, J.; Chen, Y. Space-confined assembly of all-carbon hybrid fibers for capacitive energy storage: Realizing a built-to-order concept for micro-supercapacitors. Energy Environ. Sci. 2016, 9, 611–622.

12

Beidaghi, M.; Wang, C. L. Micro-supercapacitors based on three dimensional interdigital polypyrrole/C-MEMS electrodes. Electrochim. Acta 2011, 56, 9508–9514.

13

Jiang, S. L.; Shi, T. L.; Liu, D.; Long, H.; Xi, S.; Wu, F. S.; Li, X. P.; Xia, Q.; Tang, Z. R. Integration of MnO2 thin film and carbon nanotubes to three-dimensional carbon microelectrodes for electrochemical microcapacitors. J. Power Sources 2014, 262, 494–500.

14

Hsia, B.; Kim, M. S.; Vincent, M.; Carraro, C.; Maboudian, R. Photoresist-derived porous carbon for on-chip micro- supercapacitors. Carbon 2013, 57, 395–400.

15

Kaempgen, M.; Chan, C. K.; Ma, J.; Cui, Y.; Gruner, G. Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett. 2009, 9, 1872–1876.

16

Shen, C. W.; Wang, X. H.; Li, S. W.; Wang, J. G.; Zhang, W. F.; Kang, F. Y. A high-energy-density micro supercapacitor of asymmetric MnO2-carbon configuration by using micro- fabrication technologies. J. Power Sources 2013, 234, 302–309.

17

Chen, W.; Beidaghi, M.; Penmatsa, V.; Bechtold, K.; Kumari, L.; Li, W. Z.; Wang, C. L. Integration of carbon nanotubes to C-MEMS for on-chip supercapacitors. IEEE T. Nanotechnol. 2010, 9, 734–740.

18

Wang, H. J.; Peng, C.; Zheng, J. D.; Peng, F.; Yu, H. Design, synthesis and the electrochemical performance of MnO2/C@CNT as supercapacitor material. Mater. Res. Bull. 2013, 48, 3389–3393.

19

Kim, S. -K.; Park, H. S. Multiwalled carbon nanotubes coated with a thin carbon layer for use as composite electrodes in supercapacitors. RSC Adv. 2014, 4, 47827–47832.

20

Liu, Y. Y.; Tang, J.; Chen, X. Q.; Xin, J. H. Decoration of carbon nanotubes with chitosan. Carbon 2005, 43, 3178– 3180.

21

Jiang, S. L.; Shi, T. L.; Zhan, X. B.; Xi, S.; Long, H.; Gong, B.; Li, J. J.; Cheng, S. Y.; Huang, Y. Y.; Tang, Z. R. Scalable fabrication of carbon-based MEMS/NEMS and their applications: A review. J. Micromech. Microeng. 2015, 25, 113001.

22

Wei, L.; Sevilla, M.; Fuertes, A. B.; Mokaya, R.; Yushin, G. Polypyrrole-derived activated carbons for high-performance electrical double-layer capacitors with ionic liquid electrolyte. Adv. Funct. Mater. 2012, 22, 827–834.

23

Sevilla, M.; Mokaya, R. Energy storage applications of activated carbons: Supercapacitors and hydrogen storage. Energy Environ. Sci. 2014, 7, 1250–1280.

24

Simon, P.; Gogotsi, Y. Capacitive energy storage in nanostructured carbon-electrolyte systems. Acc. Chem. Res. 2013, 46, 1094–1103.

25

Béguin, F.; Presser, V.; Balducci, A.; Frackowiak, E. Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 2014, 26, 2219–2251.

26

Futaba, D. N.; Hata, K.; Yamada, T.; Hiraoka, T.; Hayamizu, Y.; Kakudate, Y.; Tanaike, O.; Hatori, H.; Yumura, M.; Iijima, S. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat. Mater. 2006, 5, 987–994.

27

Sivaraman, P.; Bhattacharrya, A. R.; Mishra, S. P.; Thakur, A. P.; Shashidhara, K.; Samui, A. B. Asymmetric supercapacitor containing poly(3-methyl thiophene)-multiwalled carbon nanotubes nanocomposites and activated carbon. Electrochim. Acta 2013, 94, 182–191.

28

Penmatsa, V.; Kawarada, H.; Wang, C. L. Fabrication of carbon nanostructures using photo-nanoimprint lithography and pyrolysis. J. Micromech. Microeng. 2012, 22, 045024.

29

He, L.; Toda, M.; Kawai, Y.; Miyashita, H.; Omori, M.; Hashida, T.; Berger, R.; Ono, T. Fabrication of CNT-carbon composite microstructures using Si micromolding and pyrolysis. Microsyst. Technol. 2014, 20, 201–208.

30

He, L.; Toda, M.; Kawai, Y.; Sarbi, M. F.; Omori, M.; Hashida, T.; Ono, T. Fabrication of a Si-PZT hybrid XY- microstage with CNT-carbon hinges. IEEJ Trans. Sens. Micromach. 2012, 132, 425–426.

31

Zhou, P.; Yang, X.; He, L.; Hao, Z. M.; Luo, W.; Xiong, B.; Xu, X.; Niu, C. J.; Yan, M. Y.; Mai, L. Q. The Young's modulus of high-aspect-ratio carbon/carbon nanotube composite microcantilevers by experimental and modeling validation. Appl. Phys. Lett. 2015, 106, 111908.

32

Reserbat-Plantey, A.; Schädler, K. G.; Gaudreau, L.; Navickaite, G.; Güttinger, J.; Chang, D.; Toninelli, C.; Bachtold, A.; Koppens, F. H. L. Electromechanical control of nitrogen-vacancy defect emission using graphene NEMS. Nat. Commun. 2016, 7, 10218.

33

Lau, C.; Cooney, M. J.; Atanassov, P. Conductive macroporous composite chitosan-carbon nanotube scaffolds. Langmuir 2008, 24, 7004–7010.

34

Yang X. M.; Tu, Y. F.; Li, L.; Shang, S. M.; Tao, X. -M. Well-dispersed chitosan/graphene oxide nanocomposites. ACS Appl. Mater. Interfaces 2010, 2, 1707–1713.

35

Lin, J. H.; He, C. Y.; Zhao, Y.; Zhang, S. S. One-step synthesis of silver nanoparticles/carbon nanotubes/chitosan film and its application in glucose biosensor. Sensor. Actuat. B 2009, 137, 768–773.

36

Yamamoto, G.; Suk, J. W.; An, J.; Piner, R. D.; Hashida, T.; Takagi, T.; Ruoff, R. S. The influence of Nanoscale defects on the fracture of multi-walled carbon nanotubes under tensile loading. Diam. Relat. Mater. 2010, 19, 748–751.

37

Wang, S.; Hsia, B.; Carraro, C.; Maboudian, R. High- performance all solid-state micro-supercapacitor based on patterned photoresist-derived porous carbon electrodes and an ionogel electrolyte. J. Mater. Chem. A 2014, 2, 7997–8002.

38

Huang, P. H.; Heon, M.; Pech, D.; Brunet, M.; Taberna, P. -L.; Gogotsi, Y.; Lofland, S.; Hettinger, J. D.; Simon, P. Micro-supercapacitors from carbide derived carbon (CDC) films on silicon chips. J. Power Sources 2013, 225, 240–244.

39

Pech, D.; Brunet, M.; Taberna, P. -L.; Simon, P.; Fabre, N.; Mesnilgrente, F.; Conédéra, V.; Durou, H. Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor. J. Power Sources 2010, 195, 1266–1269.

40

Hsia, B.; Marschewski, J.; Wang, S.; In, J. B.; Carraro, C.; Poulikakos, D.; Grigoropoulos, C. P.; Maboudian, R. Highly flexible, all solid-state micro-supercapacitors from vertically aligned carbon nanotubes. Nanotechnology 2014, 25, 055401.

41

Jiang, Y. Q.; Zhou, Q.; Lin, L. Planar MEMS supercapacitor using carbon nanotube forests. In Proceedings of the IEEE 22nd International Conference on Micro Electro Mechanical Systems, Sorrento, Italy, 2009, pp 587–590.

42

Wu, Z. -S.; Parvez, K.; Feng, X. L.; Müllen, K. Graphene- based in-plane micro-supercapacitors with high power and energy densities. Nat. Commun. 2013, 4, 2487.

43

Yun, J.; Kim, D.; Lee, G.; Ha, J. S. All-solid-state flexible micro-supercapacitor arrays with patterned graphene/MWNT electrodes. Carbon 2014, 79, 156–164.

44

Gu, S. S.; Lou, Z.; Li, L. D.; Chen, Z. J.; Ma, X. D.; Shen, G. Z. Fabrication of flexible reduced graphene oxide/Fe2O3 hollow nanospheres based on-chip micro-supercapacitors for integrated photodetecting applications. Nano Res. 2016, 9, 424–434.

45

Park, B. Y.; Taherabadi, L.; Wang, C. L.; Zoval, J.; Madou, M. J. Electrical properties and shrinkage of carbonized photoresist films and the implications for carbon microelectromechanical systems devices in conductive media. J. Electrochem. Soc. 2005, 152, J136–J143.

46

Cai, Z. Y.; Xu, L.; Yan, M. Y.; Han, C. H.; He, L.; Hercule, K. M.; Niu, C. J.; Yuan, Z. F.; Xu, W. W.; Qu, L. B. et al. Manganese oxide/carbon yolk–shell nanorod anodes for high capacity lithium batteries. Nano Lett. 2015, 15, 738–744.

47

An, Z. L.; He, L.; Toda, M.; Yamamoto, G.; Hashida, T.; Ono, T. Microstructuring of carbon nanotubes-nickel nanocomposite. Nanotechnology 2015, 26, 195601.

48

Xu, G. H.; Zheng, C.; Zhang, Q.; Huang, J. Q.; Zhao, M. Q.; Nie, J. Q.; Wang, X. H.; Wei, F. Binder-free activated carbon/ carbon nanotube paper electrodes for use in supercapacitors. Nano Res. 2011, 4, 870–881.

Nano Research
Pages 2510-2519
Cite this article:
Yang Y, He L, Tang C, et al. Improved conductivity and capacitance of interdigital carbon microelectrodes through integration with carbon nanotubes for micro-supercapacitors. Nano Research, 2016, 9(8): 2510-2519. https://doi.org/10.1007/s12274-016-1137-3

827

Views

78

Crossref

N/A

Web of Science

79

Scopus

7

CSCD

Altmetrics

Received: 17 February 2016
Revised: 03 May 2016
Accepted: 06 May 2016
Published: 23 June 2016
© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2016
Return