Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Coaxial multi-interface hollow Ni-Al2O3-ZnO nanowires tailored by atomic layer deposition for selective- frequency absorptions

Lili Yan1,2,§Jia Liu3,§Shichao Zhao1,2Bin Zhang1Zhe Gao1Huibin Ge1,2Yao Chen1,2Maosheng Cao3()Yong Qin1()
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry Chinese Academy of SciencesTaiyuan 030001 China
University of Chinese Academy of Sciences Beijing 100039 China
School of Material Science and Engineering Beijing Institute of TechnologyBeijing 100081 China

§ These authors contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

In this work, atomic layer deposition (ALD) was employed to fabricate coaxial multi-interface hollow Ni-Al2O3-ZnO nanowires. The morphology, microstructure, and ZnO shell thickness dependent electromagnetic and microwave absorbing properties of these Ni-Al2O3-ZnO nanowires were characterized. Excellent microwave absorbing properties with a minimum reflection loss (RL) of approximately –50 dB at 9.44 GHz were found for the Ni-Al2O3-100ZnO nanowires, which was 10 times of Ni-Al2O3 nanowires. The microwave absorption frequency could be effectively varied by simply adjusting the number of ZnO deposition cycles. The absorption peaks of Ni-Al2O3-100ZnO and Ni-Al2O3-150ZnO nanowires shifted of 5.5 and 6.8 GHz towards lower frequencies, respectively, occupying one third of the investigated frequency band. The enhanced microwave absorption arose from multiple loss mechanisms caused by the unique coaxial multi-interface structure, such as multi-interfacial polarization relaxation, natural and exchange resonances, as well as multiple internal reflections and scattering. These results demonstrate that the ALD method can be used to realize tailored nanoscale structures, making it a highly promising method for obtaining high- efficiency microwave absorbers, and opening a potentially novel route for frequency adjustment and microwave imaging fields.

Electronic Supplementary Material

Download File(s)
nr-10-5-1595_ESM.pdf (846.9 KB)

References

1

Chen, Y.; Zhang, H. B.; Yang, Y. B.; Wang, M.; Cao, A. Y.; Yu, Z. Z. High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding. Adv. Funct. Mater. 2016, 26, 447–455.

2

Wen, B.; Cao, M. S.; Lu, M. M.; Cao, W. Q.; Shi, H. L.; Liu, J.; Wang, X. X.; Jin, H. B.; Fang, X. Y.; Wang, W. Z. et al. Reduced graphene oxides: Light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 2014, 26, 3484–3489.

3

Chen, Y.; Wang, Y. L.; Zhang, H. B.; Li, X. F.; Gui, C. X.; Yu, Z. Z. Enhanced electromagnetic interference shielding efficiency of polystyrene/graphene composites with magnetic Fe3O4 nanoparticles. Carbon 2015, 82, 67–76.

4

He, J. Z.; Wang, X. X.; Zhang, Y. L.; Cao, M. S. Small magnetic nanoparticles decorating reduced graphene oxides to tune the electromagnetic attenuation capacity. J. Mater. Chem. C 2016, 4, 7130–7140.

5

Huang, X. G.; Zhang, J.; Xiao, S. R.; Chen, G. S. The cobalt zinc spinel ferrite nanofiber: Lightweight and efficient microwave absorber. J. Am. Ceram. Soc. 2014, 97, 1363– 1366.

6

Zhu, W. M.; Wang, L.; Zhao, R.; Ren, J. W.; Lu, G. Z.; Wang, Y. Q. Electromagnetic and microwave-absorbing properties of magnetic nickel ferrite nanocrystals. Nanoscale 2011, 3, 2862–2864.

7

Ghodake, J. S.; Kambale, R. C.; Shinde, T. J.; Maskar, P. K.; Suryavanshi, S. S. Magnetic and microwave absorbing properties of Co2+ substituted nickel-zinc ferrites with the emphasis on initial permeability studies. J. Magn. Magn. Mater. 2016, 401, 938–942.

8

Devkota, J.; Colosimo, P.; Chen, A.; Larin, V. S.; Srikanth, H.; Phan, M. H. Tailoring magnetic and microwave absorption properties of glass-coated soft ferromagnetic amorphous microwires for microwave energy sensing. J. Appl. Phys. 2014, 115, 17A525.

9

Liu, Q. H.; Cao, Q.; Zhao, X. B.; Bi, H.; Wang, C.; Wu, D. S.; Che, R. C. Insights into size-dominant magnetic microwave absorption properties of CoNi microflowers via off-axis electron holography. ACS Appl. Mater. Interfaces 2015, 7, 4233–4240.

10

Liu, T.; Pang, Y.; Zhu, M.; Kobayashi, S. Microporous Co@CoO nanoparticles with superior microwave absorption properties. Nanoscale 2014, 6, 2447–2454.

11

Duan, Y. P.; Liu, Z.; Jing, H.; Zhang, Y. H.; Li, S. Q. Novel microwave dielectric response of Ni/Co-doped manganese dioxides and their microwave absorbing properties. J. Mater. Chem. 2012, 22, 18291–18299.

12

Tong, G. X.; Hu, Q.; Wu, W. H.; Li, W.; Qian, H. S.; Liang, Y. Submicrometer-sized NiO octahedra: Facile one-pot solid synthesis, formation mechanism, and chemical conversion into Ni octahedra with excellent microwave-absorbing pro­perties. J. Mater. Chem. 2012, 22, 17494–17504.

13

Duan, Y. P.; Jing, H.; Liu, Z.; Li, S. Q.; Ma, G. J. Controlled synthesis and electromagnetic performance of hollow microstructures assembled of tetragonal MnO2 nano-columns. J. Appl. Phys. 2012, 111, 084109.

14

Liu, J.; Cao, M. S.; Luo, Q.; Shi, H. L.; Wang, W. Z.; Yuan, J. Electromagnetic property and tunable microwave absorption of 3D nets from nickel chains at elevated temperature. ACS Appl. Mater. Interfaces 2016, 8, 22615–22622.

15

Mederos-Henry, F.; Pichon, B. P.; Yagang, Y. T.; Delcorte, A.; Bailly, C.; Huynen, I.; Hermans, S. Decoration of nanocarbon solids with magnetite nanoparticles: Towards microwave metamaterial absorbers. J. Mater. Chem. C 2016, 4, 3290–3303.

16

Wang, M.; Duan, Y. P.; Liu, S. H.; Li, X. G.; Ji, Z. J. Absorption properties of carbonyl-iron/carbon black double- layer microwave absorbers. J. Magn. Magn. Mater. 2009, 321, 3442–3446.

17

Tong, G. X.; Liu, F. T.; Wu, W. H.; Du, F. F.; Guan, J. G. Rambutan-like Ni/MWCNT heterostructures: Easy synthesis, formation mechanism, and controlled static magnetic and microwave electromagnetic characteristics. J. Mater. Chem. A 2014, 2, 7373–7382.

18

Wang, G. Z.; Gao, Z.; Tang, S. W.; Chen, C. Q.; Duan, F. F.; Zhao, S. C.; Lin, S. W.; Feng, Y. H.; Zhou, L.; Qin, Y. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 2012, 6, 11009–11017.

19

Zhou, H.; Wang, J. C.; Zhuang, J. D.; Liu, Q. A covalent route for efficient surface modification of ordered mesoporous carbon as high performance microwave absorbers. Nanoscale 2013, 5, 12502–12511.

20

Zhang, Y.; Huang, Y.; Chen, H. H.; Huang, Z. Y.; Yang, Y.; Xiao, P. S.; Zhou, Y.; Chen, Y. S. Composition and structure control of ultralight graphene foam for high-performance microwave absorption. Carbon 2016, 105, 438–447.

21

Wang, J. C.; Xiang, C. S.; Liu, Q.; Pan, Y. B.; Guo, J. K. Ordered mesoporous carbon/fused silica composites. Adv. Funct. Mater. 2008, 18, 2995–3002.

22

Che, R. C.; Peng, L. M.; Duan, X. F.; Chen, Q.; Liang, X. L. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 2004, 16, 401–405.

23

Yi, J. W.; Lee, S. B.; Seong, D. G.; Lee, S. K.; Kim, K. H.; Park, O. O. Effect of iron-deposited graphene oxides on the electromagnetic wave absorbing property of polymer composite films with Fe-based hollow magnetic fibers for near-field applications. J. Alloy. Compd. 2016, 663, 196–203.

24

Li, N.; Huang, Y.; Du, F.; He, X. B.; Lin, X.; Gao, H. J.; Ma, Y. F.; Li, F. F.; Chen, Y. S.; Eklund, P. C. Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett. 2006, 6, 1141–1145.

25

Xia, T.; Zhang, C.; Oyler, N. A.; Chen, X. B. Hydrogenated TiO2 nanocrystals: A novel microwave absorbing material. Adv. Mater. 2013, 25, 6905–6910.

26

Han, M. K.; Yin, X. W.; Kong, L.; Li, M.; Duan, W. Y.; Zhang, L. T.; Cheng, L. F. Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties. J. Mater. Chem. A 2014, 2, 16403–16409.

27

Li, H. F.; Huang, Y. H.; Sun, G. B.; Yan, X. Q.; Yang, Y.; Wang, J.; Zhang, Y. Directed growth and microwave absorption property of crossed ZnO netlike micro-/ nanostructures. J. Phys. Chem. C 2010, 114, 10088–10091.

28

Liu, J.; Cao, W. Q.; Jin, H. B.; Yuan, J.; Zhang, D. Q.; Cao, M. S. Enhanced permittivity and multi-region microwave absorption of nanoneedle-like ZnO in the X-band at elevated temperature. J. Mater. Chem. C 2015, 3, 4670–4677.

29

Zhou, W. C.; Hu, X. J.; Bai, X. X.; Zhou, S. Y.; Sun, C. H.; Yan, J.; Chen, P. Synthesis and electromagnetic, microwave absorbing properties of core–shell Fe3O4-poly(3, 4-ethylenedioxythiophene) microspheres. ACS Appl. Mater. Interfaces 2011, 3, 3839–3845.

30

Chen, X. N.; Meng, F. C.; Zhou, Z. W.; Tian, X.; Shan, L. M.; Zhu, S. B.; Xu, X. L.; Jiang, M.; Wang, L.; Hui, D. et al. One-step synthesis of graphene/polyaniline hybrids by in situ intercalation polymerization and their electromagnetic properties. Nanoscale 2014, 6, 8140–8148.

31

Chen, Y.; Liu, X. Y.; Mao, X. Y.; Zhuang, Q. X.; Xie, Z.; Han, Z. W. γ-Fe2O3-MWNT/poly (p-phenylenebenzobisoxazole) composites with excellent microwave absorption performance and thermal stability. Nanoscale 2014, 6, 6440–6447.

32

Li, Y. N.; Zhao, Y.; Lu, X. Y.; Zhu, Y.; Jiang, L. Self- healing superhydrophobic polyvinylidene fluoride/Fe3O4@ polypyrrole fiber with core–sheath structures for superior microwave absorption. Nano Res. 2016, 9, 2034–2045.

33

Ding, Y.; Zhang, L.; Liao, Q. L.; Zhang, G. J.; Liu, S.; Zhang, Y. Electromagnetic wave absorption in reduced graphene oxide functionalized with Fe3O4/Fe nanorings. Nano Res. 2016, 9, 2018–2025.

34

Wen, B.; Cao, M. S.; Hou, Z. L.; Song, W. L.; Zhang, L.; Lu, M. M.; Jin, H. B.; Fang, X. Y.; Wang, W. Z.; Yuan, J. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites Carbon 2013, 65, 124–139.

35

Liu, Q. H.; Xu, X. H.; Xia, W. X.; Che, R. C.; Chen, C.; Cao, Q.; He, J. G. Dependency of magnetic microwave absorption on surface architecture of Co20Ni80 hierarchical structures studied by electron holography. Nanoscale 2015, 7, 1736–1743.

36

Zhao, B.; Shao, G.; Fan, B. B.; Zhao, W. Y.; Zhang, R. Fabrication and enhanced microwave absorption properties of Al2O3 nanoflake-coated Ni core–shell composite micros­pheres. RSC Adv. 2014, 4, 57424–57429.

37

Lee, C. C.; Chen, D. H. Ag nanoshell-induced dual-frequency electromagnetic wave absorption of Ni nanoparticles. Appl. Phys. Lett. 2007, 90, 193102.

38

Sun, N. K.; Du, B. S.; Liu, F.; Si, P. Z.; Zhao, M. X.; Zhang, X. Y.; Shi, G. M. Influence of annealing on the microwave- absorption properties of Ni/TiO2 nanocomposites. J. Alloys Compd. 2013, 577, 533–537.

39

Wang, B. C.; Zhang, J. L.; Wang, T.; Qiao, L.; Li, F. S. Synthesis and enhanced microwave absorption properties of Ni@Ni2O3 core–shell particles. J. Alloys Compd. 2013, 567, 21–25.

40

Zhao, B.; Shao, G.; Fan, B. B.; Zhao, W. Y.; Zhang, R. Facile synthesis and enhanced microwave absorption properties of novel hierarchical heterostructures based on a Ni microsphere-CuO nano-rice core–shell composite. Phys. Chem. Chem. Phys. 2015, 17, 6044–6052.

41

Zhao, B.; Shao, G.; Fan, B. B.; Guo, W. H.; Xie, Y. J.; Zhang, R. Facile synthesis of Ni/ZnO composite: Morphology control and microwave absorption properties. J. Magn. Magn. Mater. 2015, 382, 78–83.

42

Dong, X. L.; Zhang, X. F.; Huang, H.; Zuo, F. Enhanced microwave absorption in Ni/polyaniline nanocomposites by dual dielectric relaxations. Appl. Phys. Lett. 2008, 92, 013127.

43

Zhang, D. F.; Xu, F. X.; Lin, J.; Yang, Z. D.; Zhang, M. Electromagnetic characteristics and microwave absorption properties of carbon-encapsulated cobalt nanoparticles in 2–18-GHz frequency range. Carbon 2014, 80, 103–111.

44

Liu, Q. H.; Cao, Q.; Bi, H.; Liang, C. Y.; Yuan, K. P.; She, W.; Yang, Y. J.; Che, R. C. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 2016, 28, 486–490.

45

Cao, M. S.; Yang, J.; Song, W. L.; Zhang, D. Q.; Wen, B.; Jin, H. B.; Hou, Z. L.; Yuan, J. Ferroferric oxide/multiwalled carbon nanotube vs. polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS Appl. Mater. Interfaces 2012, 4, 6949–6956.

46

Jiang, J. J.; Li, D.; Geng, D. Y.; An, J.; He, J.; Liu, W.; Zhang, Z. D. Microwave absorption properties of core double-shell FeCo/C/BaTiO3 nanocomposites. Nanoscale 2014, 6, 3967–3971.

47

Li, Y.; Cao, W. Q.; Yuan, J.; Wang, D. W.; Cao, M. S. Nd doping of bismuth ferrite to tune electromagnetic properties and increase microwave absorption by magnetic–dielectric synergy. J. Mater. Chem. C 2015, 3, 9276–9282.

48

Lu, M. M.; Wang, X. X.; Cao, W. Q.; Yuan, J.; Cao, M. S. Carbon nanotube-CdS core–shell nanowires with tunable and high-efficiency microwave absorption at elevated temperature. Nanotechnology 2016, 27, 065702.

49

Wang, G. Z.; Gao, Z.; Wan, G. P.; Lin, S. W.; Yang, P.; Qin, Y. High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers. Nano Res. 2014, 7, 704–716.

50

Chen, Y.; Zhang, B.; Gao, Z.; Chen, C. Q.; Zhao, S. C.; Qin, Y. Functionalization of multiwalled carbon nanotubes with uniform polyurea coatings by molecular layer deposition. Carbon 2015, 82, 470–478.

51

Chen, C. Q.; Li, P.; Wang, G. Z.; Yu, Y.; Duan, F. F.; Chen, C. Y.; Song, W. G.; Qin, Y.; Knez, M. Nanoporous nitrogen- doped titanium dioxide with excellent photocatalytic activity under visible light irradiation produced by molecular layer deposition. Angew. Chem., Int. Ed. 2013, 52, 9196–9200.

52

Zhang, B.; Chen, Y.; Li, J. W.; Pippel, E.; Yang, H. M.; Gao, Z.; Qin, Y. High efficiency Cu-ZnO hydrogenation catalyst: The tailoring of Cu–ZnO interface sites by molecular layer deposition. ACS Catal. 2015, 5, 5567–5573.

53

Gao, Z.; Dong, M.; Wang, G. Z.; Sheng, P.; Wu, Z. W.; Yang, H. M.; Zhang, B.; Wang, G. F.; Wang, J. G.; Qin, Y. Multiply confined nickel nanocatalysts produced by atomic layer deposition for hydrogenation reactions. Angew. Chem., Int. Ed. 2015, 54, 9006–9010.

54

Qin, Y.; Kim, Y.; Zhang, L. B.; Lee, S. M.; Yang, R. B.; Pan, A. L.; Mathwig, K.; Alexe, M.; Gösele, U.; Knez, M. Preparation and elastic properties of helical nanotubes obtained by atomic layer deposition with carbon nanocoils as templates. Small 2010, 6, 910–914.

55

Qin, Y.; Lee, S. M.; Pan, A. L.; Gösele, U.; Knez, M. Rayleigh-instability-induced metal nanoparticle chains encapsulated in nanotubes produced by atomic layer deposition. Nano Lett. 2008, 8, 114–118.

56

Qin, Y.; Liu, L. F.; Yang, R. B.; Gösele, U.; Knez, M. General assembly method for linear metal nanoparticle chains embedded in nanotubes. Nano Lett. 2008, 8, 3221–3225.

57

Qin, Y.; Yang, Y.; Scholz, R.; Pippel, E.; Lu, X. L.; Knez, M. Unexpected oxidation behavior of Cu nanoparticles embedded in porous alumina films produced by molecular layer deposition. Nano Lett. 2011, 11, 2503–2509.

58

Sun, H.; Che, R. C.; You, X.; Jiang, Y. S.; Yang, Z. B.; Deng, J.; Qiu, L. B.; Peng, H. S. Cross-stacking aligned carbon- nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 2014, 26, 8120–8125.

59

Li, Y.; Fang, X. Y.; Cao, M. S. Thermal frequency shift and tunable microwave absorption in BiFeO3 family. Sci. Rep. 2016, 6, 24837.

60

Han, D. D.; Xiao, N. R.; Hu, H.; Liu, B.; Song, G. X.; Yan, H. Ultrasmall superparamagnetic Ni nanoparticles embedded in polyaniline as a lightweight and thin microwave absorber. RSC Adv. 2015, 5, 66667–66673.

61

Shi, X. L.; Cao, M. S.; Yuan, J.; Zhao, Q. L.; Kang, Y. Q.; Fang, X. Y.; Chen, Y. J. Nonlinear resonant and high dielectric loss behavior of CdS/α-Fe2O3 heterostructure nanocomposites. Appl. Phys. Lett. 2008, 93, 183118.

62

Cao, W. Q.; Wang, X. X.; Yuan, J.; Wang, W. Z.; Cao, M. S. Temperature dependent microwave absorption of ultrathin graphene composites. J. Mater. Chem. C 2015, 3, 10017– 10022.

63

Cao, M. S.; Qin, R. R.; Qiu, C. J.; Zhu, J. Matching design and mismatching analysis towards radar absorbing coatings based on conducting plate. Mater. Design 2003, 24, 391–396.

Nano Research
Pages 1595-1607
Cite this article:
Yan L, Liu J, Zhao S, et al. Coaxial multi-interface hollow Ni-Al2O3-ZnO nanowires tailored by atomic layer deposition for selective- frequency absorptions. Nano Research, 2017, 10(5): 1595-1607. https://doi.org/10.1007/s12274-016-1302-8
Part of a topical collection:
Metrics & Citations  
Article History
Copyright
Return