Sort:
Research Article Issue
Flexible design of gradient multilayer nanofilms coated on carbon nanofibers by atomic layer deposition for enhanced microwave absorption performance
Nano Research 2018, 11(1): 530-541
Published: 18 July 2017
Abstract PDF (2.9 MB) Collect
Downloads:31

Impedance matching is important for achieving high-efficiency microwave absorbers. The high conductivity of dielectric loss materials such as pure metals and carbon nanomaterials generally results in poor absorption owing to the low impedance matching between the absorbers and air. Carbon nanostructures are very promising candidates for high-efficiency absorption because of their attractive features including low density, high surface area, and good stability. Herein, a new strategy is proposed to improve the impedance matching of dielectric loss materials using electrospun carbon nanofibers as an example. The carbon nanofibers are coated with specifically designed gradient multilayer nanofilms with gradually increasing electroconductibility synthesized by doping ZnO with different Al2O3 content (AZO) by atomic layer deposition. The gradient nanofilms are composed of five layers of dielectric films, namely, pure Al2O3, AZO (5:1, the pulse cycle ratio of ZnO to Al2O3), pure ZnO, AZO (10:1), and AZO (20:1). The versatile gradient films serve as intermediate layers to tune the impedance matching between air and the carbon nanofiber surfaces. Therefore, the carbon nanofibers coated with gradient films of rationally selected thicknesses exhibit remarkably enhanced microwave absorption performance, and the optimal reflection loss reaches?58.5 dB at 16.2 GHz with a thickness of only 1.8 mm. This work can help further understand the contribution of impedance matching to microwave absorption. Our strategy is general and can be applied to improve the absorption properties of other dielectric loss materials and even for applications in other fields.

Research Article Issue
Coaxial multi-interface hollow Ni-Al2O3-ZnO nanowires tailored by atomic layer deposition for selective- frequency absorptions
Nano Research 2017, 10(5): 1595-1607
Published: 02 November 2016
Abstract PDF (3.2 MB) Collect
Downloads:16

In this work, atomic layer deposition (ALD) was employed to fabricate coaxial multi-interface hollow Ni-Al2O3-ZnO nanowires. The morphology, microstructure, and ZnO shell thickness dependent electromagnetic and microwave absorbing properties of these Ni-Al2O3-ZnO nanowires were characterized. Excellent microwave absorbing properties with a minimum reflection loss (RL) of approximately –50 dB at 9.44 GHz were found for the Ni-Al2O3-100ZnO nanowires, which was 10 times of Ni-Al2O3 nanowires. The microwave absorption frequency could be effectively varied by simply adjusting the number of ZnO deposition cycles. The absorption peaks of Ni-Al2O3-100ZnO and Ni-Al2O3-150ZnO nanowires shifted of 5.5 and 6.8 GHz towards lower frequencies, respectively, occupying one third of the investigated frequency band. The enhanced microwave absorption arose from multiple loss mechanisms caused by the unique coaxial multi-interface structure, such as multi-interfacial polarization relaxation, natural and exchange resonances, as well as multiple internal reflections and scattering. These results demonstrate that the ALD method can be used to realize tailored nanoscale structures, making it a highly promising method for obtaining high- efficiency microwave absorbers, and opening a potentially novel route for frequency adjustment and microwave imaging fields.

Research Article Issue
High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers
Nano Research 2014, 7(5): 704-716
Published: 23 April 2014
Abstract PDF (5.1 MB) Collect
Downloads:35

An atomic layer deposition (ALD) method has been employed to synthesize Fe3O4/graphene and Ni/graphene composites. The structure and microwave absorbing properties of the as-prepared composites are investigated. The surfaces of graphene are densely covered by Fe3O4 or Ni nanoparticles with a narrow size distribution, and the magnetic nanoparticles are well distributed on each graphene sheet without significant conglomeration or large vacancies. The coated graphene materials exhibit remarkably improved electromagnetic (EM) absorption properties compared to the pristine graphene. The optimal reflection loss (RL) reaches -46.4 dB at 15.6 GHz with a thickness of only 1.4 mm for the Fe3O4/graphene composites obtained by applying 100 cycles of Fe2O3 deposition followed by a hydrogen reduction. The enhanced absorption ability arises from the effective impedance matching, multiple interfacial polarization and increased magnetic loss from the added magnetic constituents. Moreover, compared with other recently reported materials, the composites have a lower filling ratio and smaller coating thickness resulting in significantly increased EM absorption properties. This demonstrates that nanoscale surface modification of magnetic particles on graphene by ALD is a very promising way to design lightweight and high-efficiency microwave absorbers.

Total 3