AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Interface-modulated fabrication of hierarchical yolk-shell Co3O4/C dodecahedrons as stable anodes for lithium and sodium storage

Yuzhu Wu1,§Jiashen Meng1,§Qi Li1( )Chaojiang Niu1Xuanpeng Wang1Wei Yang1Wei Li1Liqiang Mai1,2 ( )
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 China
Department of Chemistry University of California Berkeley California 94720 USA

§ These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Transition-metal oxides (TMOs) have gradually attracted attention from researchers as anode materials for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) because of their high theoretical capacity. However, their poor cycling stability and inferior rate capability resulting from the large volume variation during the lithiation/sodiation process and their low intrinsic electronic conductivity limit their applications. To solve the problems of TMOs, carbon-based metal-oxide composites with complex structures derived from metal-organic frameworks (MOFs) have emerged as promising electrode materials for LIBs and SIBs. In this study, we adopted a facile interface-modulated method to synthesize yolk-shell carbon-based Co3O4 dodecahedrons derived from ZIF-67 zeolitic imidazolate frameworks. This strategy is based on the interface separation between the ZIF-67 core and the carbon-based shell during the pyrolysis process. The unique yolk-shell structure effectively accommodates the volume expansion during lithiation or sodiation, and the carbon matrix improves the electrical conductivity of the electrode. As an anode for LIBs, the yolk-shell Co3O4/C dodecahedrons exhibit a high specific capacity and excellent cycling stability (1, 100 mAh·g-1 after 120 cycles at 200 mA·g-1). As an anode for SIBs, the composites exhibit an outstanding rate capability (307 mAh·g-1 at 1, 000 mA·g-1 and 269 mAh·g-1 at 2, 000 mA·g-1). Detailed electrochemical kinetic analysis indicates that the energy storage for Li+ and Na+ in yolk-shell Co3O4/C dodecahedrons shows a dominant capacitive behavior. This work introduces an effective approach for fabricating carbon- based metal-oxide composites by using MOFs as ideal precursors and as electrode materials to enhance the electrochemical performance of LIBs and SIBs.

Electronic Supplementary Material

Download File(s)
nr-10-7-2364_ESM.pdf (1.8 MB)

References

1

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294-303.

2

Liu, J. Addressing the grand challenges in energy storage. Adv. Funct. Mater. 2013, 23, 924-928.

3

Wei, W.; Wang, Y. C.; Wu, H.; Al-Enizi, A. M.; Zhang, L. J.; Zheng, G. F. Transition metal oxide hierarchical nanotubes for energy applications. Nanotechnology 2016, 27, 02LT01.

4

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928-935.

5

Pasta, M.; Wessells, C. D.; Huggins, R. A.; Cui, Y. A high- rate and long cycle life aqueous electrolyte battery for grid-scale energy storage. Nat. Commun. 2012, 3, 1149.

6

Suo, L. M.; Hu, Y. S.; Li, H.; Armand, M.; Chen, L. Q. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 2013, 4, 1481.

7

Yang, C. P.; Yin, Y. X.; Zhang, S. F.; Li, N. W.; Guo, Y. G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 2015, 6, 8058.

8

Ding, Y. L.; Wen, Y. R.; Wu, C.; van Aken, P. A.; Maier, J.; Yu, Y. 3D V6O13 nanotextiles assembled from interconnected nanogrooves as cathode materials for high-energy lithium ion batteries. Nano Lett. 2015, 15, 1388-1394.

9

Zhu, C. B.; Mu, X. K.; van Aken, P. A.; Maier, J.; Yu, Y. Fast Li storage in MoS2-graphene-carbon nanotube nanocomposites: Advantageous functional integration of 0D, 1D, and 2D nanostructures. Adv. Energy Mater. 2015, 5, 1401170.

10

Chen, Y. M.; Yu, L.; Lou, X. W. Hierarchical tubular structures composed of Co3O4 hollow nanoparticles and carbon nanotubes for lithium storage. Angew. Chem. 2016, 128, 6094-6097.

11

Ji, L. W.; Lin, Z.; Alcoutlabi, M.; Zhang, X. W. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 2011, 4, 2682-2699.

12

Yuan, S.; Wang, S.; Li, L.; Zhu, Y. H.; Zhang, X. B.; Yan, J. M. Integrating 3D flower-like hierarchical Cu2NiSnS4 with reduced graphene oxide as advanced anode materials for Na-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 9178-9184.

13

Wang, S.; Yuan, S.; Yin, Y. B.; Zhu, Y. H.; Zhang, X. B.; Yan, J. M. Green and facile fabrication of MWNTs@Sb2S3@PPy coaxial nanocables for high-performance Na-ion batteries. Part. Part. Syst. Char. 2016, 33, 493-499.

14

Huang, X. L.; Zhao, X.; Wang, Z. L.; Wang, L. M.; Zhang, X. B. Facile and controllable one-pot synthesis of an ordered nanostructure of Co(OH)2 nanosheets and their modification by oxidation for high-performance lithium-ion batteries. J. Mater. Chem. 2012, 22, 3764-3769.

15

Huang, X. L.; Wang, R. Z.; Xu, D.; Wang, Z. L.; Wang, H. G.; Xu, J. J.; Wu, Z.; Liu, Q. C.; Zhang, Y.; Zhang, X. B. Homogeneous CoO on graphene for binder-free and ultralong-life lithium ion batteries. Adv. Funct. Mater. 2013, 23, 4345-4353.

16

Yu, Y.; Niu, C. J.; Han, C. H.; Zhao, K. N.; Meng, J. S.; Xu, X. M.; Zhang, P. F.; Wang, L.; Wu, Y. Z.; Mai, L. Q. Zinc pyrovanadate nanoplates embedded in graphene networks with enhanced electrochemical performance. Ind. Eng. Chem. Res. 2016, 55, 2992-2999.

17

Mahmood, N.; Zhu, J. H.; Rehman, S.; Li, Q.; Hou, Y. L. Control over large-volume changes of lithium battery anodes via active-inactive metal alloy embedded in porous carbon. Nano Energy 2015, 15, 755-765.

18

Roh, H. K.; Kim, H. K.; Kim, M. S.; Kim, D. H.; Chung, K. Y.; Roh, K. C.; Kim, K. B. In situ synthesis of chemically bonded NaTi2(PO4)3/rGO 2D nanocomposite for high-rate sodium-ion batteries. Nano Res. 2016, 9, 1844-1855.

19

Xie, D.; Tang, W. J.; Wang, Y. D.; Xia, X. H.; Zhong, Y.; Zhou, D.; Wang, D. H.; Wang, X. L.; Tu, J. P. Facile fabrication of integrated three-dimensional C-MoSe2/reduced graphene oxide composite with enhanced performance for sodium storage. Nano Res. 2016, 9, 1618-1629.

20

Wang, X. P.; Niu, C. J.; Meng, J. S.; Hu, P.; Xu, X. M.; Wei, X. J.; Zhou, L.; Zhao, K. N.; Luo, W.; Yan, M. Y. et al. Novel K3V2(PO4)3/C bundled nanowires as superior sodium- ion battery electrode with ultrahigh cycling stability. Adv. Energy Mater. 2015, 5, 1500716.

21

Niu, C. J.; Meng, J. S.; Wang, X. P.; Han, C. H.; Yan, M. Y.; Zhao, K. N.; Xu, X. M.; Ren, W. H.; Zhao, Y. L.; Xu, L. et al. General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis. Nat. Commun. 2015, 6, 7402.

22

Lee, J.; Zhu, H. Z.; Yadav, G. G.; Caruthers, J.; Wu, Y. Porous ternary complex metal oxide nanoparticles converted from core/shell nanoparticles. Nano Res. 2016, 9, 996-1004.

23

Sun, C. C.; Dong, Q. C.; Yang, J.; Dai, Z. Y.; Lin, J. J.; Chen, P.; Huang, W.; Dong, X. C. Metal-organic framework derived CoSe2 nanoparticles anchored on carbon fibers as bifunctionalelectrocatalysts for efficient overall water splitting. Nano Res. 2016, 9, 2234-2243.

24

Meng, J. S.; Niu, C. J.; Liu, X.; Liu, Z. A.; Chen, H. L.; Wang, X. P.; Li, J. T.; Chen, W.; Guo, X. F.; Mai, L. Q. Interface-modulated approach toward multilevel metal oxide nanotubes for lithium-ion batteries and oxygen reduction reaction. Nano Res. 2016, 9, 2445-2457.

25

Wang, Z.; Jia, W.; Jiang, M. L.; Chen, C.; Li, Y. D. One-step accurate synthesis of shell controllable CoFe2O4 hollow microspheres as high-performance electrode materials in supercapacitor. Nano Res. 2016, 9, 2026-2033.

26

Wang, S. B.; Xing, Y. L.; Xu, H. Z.; Zhang, S. C. MnO nanoparticles interdispersed in 3D porous carbon framework for high performance lithium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 12713-12718.

27

Kim, W. S.; Choi, J.; Hong, S. H. Meso-porous silicon- coated carbon nanotube as an anode for lithium-ion battery. Nano Res. 2016, 9, 2174-2181.

28

Jiao, J. Q.; Qiu, W. D.; Tang, J. G.; Chen, L. P.; Jing, L. Y. Synthesis of well-defined Fe3O4 nanorods/N-doped graphene for lithium-ion batteries. Nano Res. 2016, 9, 1256-1266.

29

Yang, J.; Zhang, Y.; Sun, C. C.; Liu, H. Z.; Li, L. Q.; Si, W. L.; Huang, W.; Yan, Q. Y.; Dong, X. C. Graphene and cobalt phosphide nanowire composite as an anode material for high performance lithium-ion batteries. Nano Res. 2016, 9, 612-621.

30

Luo, B.; Zhi, L. J. Design and construction of three dimensional graphene-based composites for lithium ion battery applications. Energy Environ. Sci. 2015, 8, 456-477.

31

Niu, C. J.; Huang, M.; Wang, P. Y.; Meng, J. S.; Liu, X.; Wang, X. P.; Zhao, K. N.; Yu, Y.; Wu, Y. Z.; Lin, C. et al. Carbon-supported and nanosheet-assembled vanadium oxide microspheres for stable lithium-ion battery anodes. Nano Res. 2016, 9, 128-138.

32

Jeong, J. M.; Choi, B. G.; Lee, S. C.; Lee, K. G.; Chang, S. J.; Han, Y. K.; Lee, Y. B.; Lee, H. U.; Kwon, S.; Lee, G. et al. Hierarchical hollow spheres of Fe2O3@polyaniline for lithium ion battery anodes. Adv. Mater. 2013, 25, 6250-6255.

33

Wang, N.; Liu, Q. L.; Kang, D. M.; Gu, J. J.; Zhang, W.; Zhang, D. Facile self-cross-linking synthesis of 3D nanoporous Co3O4/carbon hybrid electrode materials for supercapacitors. ACS Appl. Mater. Interfaces 2016, 8, 16035-16044.

34

Xu, X. D.; Cao, R. G.; Jeong, S.; Cho, J. Spindle-like mesoporous α-Fe2O3 anode material prepared from MOF template for high-rate lithium batteries. Nano Lett. 2012, 12, 4988-4991.

35

Shao, J.; Wan, Z. M.; Liu, H. M.; Zheng, H. Y.; Gao, T.; Shen, M.; Qu, Q. T.; Zheng, H. H. Metal organic frameworks- derived Co3O4 hollow dodecahedrons withcontrollable interiors as outstanding anodes for Li storage. J. Mater. Chem. A 2014, 2, 12194-12200.

36

Zhang, L.; Wu, H. B.; Madhavi, S.; Hng, H. H.; Lou, X. W. Formation of Fe2O3 microboxes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties. J. Am. Chem. Soc. 2012, 134, 17388- 17391.

37

Han, Y.; Zhao, M. L.; Dong, L.; Feng, J. M.; Wang, Y. J.; Li, D. J.; Li, X. F. MOF-derived porous hollow Co3O4 parallelepipeds for building high-performance Li-ion batteries. J. Mater. Chem. A2015, 3, 22542-22546.

38

Tian, D.; Zhou, X. L.; Zhang, Y. H.; Zhou, Z.; Bu, X. H. MOF-derived porous Co3O4 hollow tetrahedra with excellent performance as anode materials for lithium-ion batteries. Inorg. Chem. 2015, 54, 8159-8161.

39

Hou, Y.; Li, J. Y.; Wen, Z. H.; Cui, S. M.; Yuan, C.; Chen, J. H. Co3O4 nanoparticles embedded in nitrogen-doped porous carbon dodecahedrons with enhanced electrochemical properties for lithium storage and water splitting. Nano Energy 2015, 12, 1-8.

40

Zou, F.; Chen, Y. M.; Liu, K. W.; Yu, Z. T.; Liang, W. F.; Bhaway, S. M.; Gao, M.; Zhu, Y. Metal organic frameworks derived hierarchical hollow NiO/Ni/graphene composites for lithium and sodium storage. ACS Nano 2016, 10, 377-386.

41

Jiang, Z.; Li, Z. P.; Qin, Z. H.; Sun, H. Y.; Jiao, X. L.; Chen, D. R. LDH nanocages synthesized with MOF templates and their high performance as supercapacitors. Nanoscale 2013, 5, 11770-11775.

42

Zhou, L.; Zhao, D. Y.; Lou, X. W. Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries. Adv. Mater. 2012, 24, 745-748.

43

Yan, N.; Hu, L.; Li, Y.; Wang, Y.; Zhong, H.; Hu, X. Y.; Kong, X. K.; Chen, Q. W. Co3O4 nanocages for high- performance anode material in lithium-ion batteries. J. Phys. Chem. C 2012, 116, 7227-7235.

44

Li, W. Y.; Xu, L. N.; Chen, J. Co3O4 nanomaterials in lithium-ion batteries and gas sensors. Adv. Funct. Mater. 2005, 15, 851-857.

45

Du, N.; Zhang, H.; Chen, B. D.; Wu, J. B.; Ma, X. Y.; Liu, Z. H.; Zhang, Y. Q.; Yang, D. R.; Huang, X. H.; Tu, J. P. Porous Co3O4 nanotubes derived from Co4(CO)12 clusters on carbon nanotube templates: A highly efficient material for Li-battery applications. Adv. Mater. 2007, 19, 4505-4509.

46

Grugeon, S.; Laruelle, S.; Dupont, L.; Tarascon, J. M. An update on the reactivity of nanoparticles Co-based compounds towards Li. Solid State Sci. 2003, 5, 895-904.

47

Lee, J. E.; Yu, S. H.; Lee, D. J.; Lee, D. C.; Han, S. I.; Sung, Y. E.; Hyeon, T. Facile and economical synthesis of hierarchical carbon-coated magnetite nanocomposite particles and their applications in lithium ion battery anodes. Energy Environ. Sci. 2012, 5, 9528-9533.

48

Zheng, C.; Zhou, X. F.; Cao, H. L.; Wang, G. H.; Liu, Z. P. Synthesis of porous graphene/activated carbon composite with high packing density and large specific surface area for supercapacitor electrode material. J. Power Sources 2014, 258, 290-296.

49

Choi, S. H.; Lee, J. K.; Kang, Y. C. Three-dimensional porous graphene-metal oxide compositemicrospheres: Preparation and application in Li-ion batteries. Nano Res. 2015, 8, 1584-1594.

50

Fei, H. L.; Peng, Z. W.; Li, L.; Yang, Y.; Lu, W.; Samuel, E. L. G.; Fan, X. J.; Tour, J. M. Preparation of carbon-coated iron oxide nanoparticles dispersed on graphene sheets and applications as advanced anode materials for lithium-ion batteries. Nano Res. 2014, 7, 502-510.

51

Huang, G.; Zhang, F. F.; Du, X. C.; Qin, Y. L.; Yin, D. M.; Wang, L. M. Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries. ACS Nano 2015, 9, 1592-1599.

52

Qu, Q. T.; Gao, T.; Zheng, H. Y.; Li, X. X.; Liu, H. M.; Shen, M.; Shao, J.; Zheng, H. H. Graphene oxides-guided growth of ultrafine Co3O4 nanocrystallites from MOFs as high-performance anode of Li-ion batteries. Carbon 2015, 92, 119-125.

53

Huang, G.; Zhang, F. F.; Du, X. C.; Wang, J. W.; Yin, D. M.; Wang, L. M. Core-shell NiFe2O4@TiO2 nanorods: An anode material with enhanced electrochemical performance for lithium-ion batteries. Chem. —Eur. J. 2014, 20, 11214-11219.

54

Muller, G. A.; Cook, J. B.; Kim, H. S.; Tolbert, S. H.; Dunn, B. High performance pseudocapacitor based on 2D layered metal chalcogenide nanocrystals. Nano Lett. 2015, 15, 1911-1917.

55

Kim, H. S.; Cook, J. B.; Tolbert, S. H.; Dunn, B. The development of pseudocapacitive properties in nanosized- MoO2. J. Electrochem. Soc. 2015, 162, A5083-A5090.

56

Zhu, Y.; Peng, L. L.; Chen, D. H.; Yu, G. H. Intercalation pseudocapacitance in ultrathinVOPO4 nanosheets: Toward high-rate alkali-ion-based electrochemical energy storage. Nano Lett. 2016, 16, 742-747.

57

Wang, J.; Polleux, J.; James, L. A.; Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 2007, 111, 14925- 14931.

58

Kim, H.; Hong, J.; Park, Y. U.; Kim, J.; Hwang, I.; Kang, K. Sodium storage behavior in natural graphite using ether- based electrolyte systems. Adv. Funct. Mater. 2015, 25, 534-541.

59

Li, S.; Qiu, J. X.; Lai, C.; Ling, M.; Zhao, H. J.; Zhang, S. Q. Surface capacitive contributions: Towards high rate anode materials for sodium ion batteries. Nano Energy 2015, 12, 224-230.

60

Zhao, K. N.; Liu, F. N.; Niu, C. J.; Xu, W. W.; Dong, Y. F.; Zhang, L.; Xie, S. M.; Yan, M. Y.; Wei, Q. L.; Zhao, D. Y. et al. Graphene oxide wrapped amorphous copper vanadium oxide with enhanced capacitive behavior for high-rate and long-life lithium-ion battery anodes. Adv. Sci. 2015, 2, 1500154.

61

Rahman, M. M.; Glushenkov, A. M.; Ramireddy, T.; Chen, Y. Electrochemical investigation of sodium reactivity with nanostructured Co3O4 for sodium-ion batteries. Chem. Commun. 2014, 50, 5057-5060.

62

Jian, Z. L.; Liu, P.; Li, F. J.; Chen, M. W.; Zhou, H. S. Monodispersed hierarchical Co3O4 spheres intertwined with carbon nanotubes for use as anode materials in sodium-ion batteries. J. Mater. Chem. A 2014, 2, 13805-13809.

63

Liu, Y. G.; Cheng, Z. Y.; Sun, H. Y.; Arandiyan, H.; Li, J. P.; Ahmad, M. Mesoporous Co3O4 sheets/3D graphene networks nanohybrids for high-performance sodium-ion battery anode. J. Power Sources 2015, 273, 878-884.

64

Yang, J. P.; Zhou, T. F.; Zhu, R.; Chen, X. Q.; Guo, Z. P.; Fan, J. W.; Liu, H. K.; Zhang, W. X. Highly ordered dual porosity mesoporous cobalt oxide for sodium-ion batteries. Adv. Mater. Interfaces 2016, 3, 1500464.

65

Moreau, P.; Guyomard, D.; Gaubicher, J.; Boucher, F. Structure and stability of sodium intercalated phases in olivine FePO4. Chem. Mater. 2010, 22, 4126-4128.

66

Naeyaert, P. J. P.; Avdeev, M.; Sharma, N.; Yahia, H. B.; Ling, C. D. Synthetic, structural, and electrochemical study of monoclinic Na4Ti5O12 as a sodium-ion battery anode material. Chem. Mater. 2014, 26, 7067-7072.

67

Ong, S. P.; Chevrier, V. L.; Hautier, G.; Jain, A.; Moore, C.; Kim, S.; Ma, X. H.; Ceder, G. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 2011, 4, 3680- 3688.

Nano Research
Pages 2364-2376
Cite this article:
Wu Y, Meng J, Li Q, et al. Interface-modulated fabrication of hierarchical yolk-shell Co3O4/C dodecahedrons as stable anodes for lithium and sodium storage. Nano Research, 2017, 10(7): 2364-2376. https://doi.org/10.1007/s12274-017-1433-6

894

Views

118

Crossref

N/A

Web of Science

123

Scopus

5

CSCD

Altmetrics

Received: 30 September 2016
Revised: 05 December 2016
Accepted: 21 December 2016
Published: 05 April 2017
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017
Return